Properties

Label 150.6.l
Level $150$
Weight $6$
Character orbit 150.l
Rep. character $\chi_{150}(17,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $400$
Sturm bound $180$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 150.l (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 75 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(180\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(150, [\chi])\).

Total New Old
Modular forms 1232 400 832
Cusp forms 1168 400 768
Eisenstein series 64 0 64

Trace form

\( 400 q + 4 q^{3} - 76 q^{7} + 496 q^{10} - 64 q^{12} - 2640 q^{13} - 3128 q^{15} + 25600 q^{16} + 2272 q^{18} + 17560 q^{19} - 8976 q^{22} - 50344 q^{25} - 16556 q^{27} + 4864 q^{28} - 3408 q^{30} + 7684 q^{33}+ \cdots + 123008 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(150, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(150, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)