Properties

Label 150.8.e
Level $150$
Weight $8$
Character orbit 150.e
Rep. character $\chi_{150}(107,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $84$
Newform subspaces $3$
Sturm bound $240$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 150.e (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(240\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(150, [\chi])\).

Total New Old
Modular forms 444 84 360
Cusp forms 396 84 312
Eisenstein series 48 0 48

Trace form

\( 84 q + 52 q^{3} + 1856 q^{6} + 1348 q^{7} - 3328 q^{12} + 21840 q^{13} - 344064 q^{16} - 50624 q^{18} + 285488 q^{21} + 47008 q^{22} - 212972 q^{27} + 86272 q^{28} + 160392 q^{31} - 1398788 q^{33} - 100864 q^{36}+ \cdots - 82948404 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(150, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
150.8.e.a 150.e 15.e $16$ $46.858$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 150.8.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{8}q^{2}+(2\beta _{7}+\beta _{9})q^{3}-2^{6}\beta _{2}q^{4}+\cdots\)
150.8.e.b 150.e 15.e $28$ $46.858$ None 30.8.e.a \(0\) \(52\) \(0\) \(1348\) $\mathrm{SU}(2)[C_{4}]$
150.8.e.c 150.e 15.e $40$ $46.858$ None 150.8.e.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{8}^{\mathrm{old}}(150, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)