Properties

Label 150.8.e
Level 150150
Weight 88
Character orbit 150.e
Rep. character χ150(107,)\chi_{150}(107,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 8484
Newform subspaces 33
Sturm bound 240240
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 150=2352 150 = 2 \cdot 3 \cdot 5^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 150.e (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 15 15
Character field: Q(i)\Q(i)
Newform subspaces: 3 3
Sturm bound: 240240
Trace bound: 11
Distinguishing TpT_p: 77

Dimensions

The following table gives the dimensions of various subspaces of M8(150,[χ])M_{8}(150, [\chi]).

Total New Old
Modular forms 444 84 360
Cusp forms 396 84 312
Eisenstein series 48 0 48

Trace form

84q+52q3+1856q6+1348q73328q12+21840q13344064q1650624q18+285488q21+47008q22212972q27+86272q28+160392q311398788q33100864q36+82948404q97+O(q100) 84 q + 52 q^{3} + 1856 q^{6} + 1348 q^{7} - 3328 q^{12} + 21840 q^{13} - 344064 q^{16} - 50624 q^{18} + 285488 q^{21} + 47008 q^{22} - 212972 q^{27} + 86272 q^{28} + 160392 q^{31} - 1398788 q^{33} - 100864 q^{36}+ \cdots - 82948404 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S8new(150,[χ])S_{8}^{\mathrm{new}}(150, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
150.8.e.a 150.e 15.e 1616 46.85846.858 Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots) None 150.8.e.a 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ8q2+(2β7+β9)q326β2q4+q-\beta _{8}q^{2}+(2\beta _{7}+\beta _{9})q^{3}-2^{6}\beta _{2}q^{4}+\cdots
150.8.e.b 150.e 15.e 2828 46.85846.858 None 30.8.e.a 00 5252 00 13481348 SU(2)[C4]\mathrm{SU}(2)[C_{4}]
150.8.e.c 150.e 15.e 4040 46.85846.858 None 150.8.e.c 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}]

Decomposition of S8old(150,[χ])S_{8}^{\mathrm{old}}(150, [\chi]) into lower level spaces

S8old(150,[χ]) S_{8}^{\mathrm{old}}(150, [\chi]) \simeq S8new(15,[χ])S_{8}^{\mathrm{new}}(15, [\chi])4^{\oplus 4}\oplusS8new(30,[χ])S_{8}^{\mathrm{new}}(30, [\chi])2^{\oplus 2}\oplusS8new(75,[χ])S_{8}^{\mathrm{new}}(75, [\chi])2^{\oplus 2}