Defining parameters
Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 150.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(150, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 444 | 84 | 360 |
Cusp forms | 396 | 84 | 312 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(150, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
150.8.e.a | $16$ | $46.858$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{8}q^{2}+(2\beta _{7}+\beta _{9})q^{3}-2^{6}\beta _{2}q^{4}+\cdots\) |
150.8.e.b | $28$ | $46.858$ | None | \(0\) | \(52\) | \(0\) | \(1348\) | ||
150.8.e.c | $40$ | $46.858$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{8}^{\mathrm{old}}(150, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)