Properties

Label 1512.1.ef
Level $1512$
Weight $1$
Character orbit 1512.ef
Rep. character $\chi_{1512}(13,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $24$
Newform subspaces $3$
Sturm bound $288$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1512.ef (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1512 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 3 \)
Sturm bound: \(288\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1512, [\chi])\).

Total New Old
Modular forms 48 48 0
Cusp forms 24 24 0
Eisenstein series 24 24 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 24 0 0 0

Trace form

\( 24 q - 12 q^{15} - 12 q^{23} - 12 q^{50} - 12 q^{64} - 12 q^{65} + 24 q^{72} - 12 q^{78} - 12 q^{81} + 24 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1512, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1512.1.ef.a 1512.ef 1512.df $6$ $0.755$ \(\Q(\zeta_{18})\) $D_{9}$ \(\Q(\sqrt{-14}) \) None 1512.1.ef.a \(0\) \(-3\) \(6\) \(0\) \(q-\zeta_{18}^{5}q^{2}+\zeta_{18}^{6}q^{3}-\zeta_{18}q^{4}+(1+\cdots)q^{5}+\cdots\)
1512.1.ef.b 1512.ef 1512.df $6$ $0.755$ \(\Q(\zeta_{18})\) $D_{9}$ \(\Q(\sqrt{-14}) \) None 1512.1.ef.a \(0\) \(3\) \(-6\) \(0\) \(q-\zeta_{18}^{5}q^{2}-\zeta_{18}^{6}q^{3}-\zeta_{18}q^{4}+(-1+\cdots)q^{5}+\cdots\)
1512.1.ef.c 1512.ef 1512.df $12$ $0.755$ \(\Q(\zeta_{36})\) $D_{18}$ \(\Q(\sqrt{-14}) \) None 1512.1.ef.c \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{36}^{10}q^{2}+\zeta_{36}^{3}q^{3}-\zeta_{36}^{2}q^{4}+\cdots\)