Defining parameters
Level: | \( N \) | \(=\) | \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1512.ef (of order \(18\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1512 \) |
Character field: | \(\Q(\zeta_{18})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1512, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 48 | 0 |
Cusp forms | 24 | 24 | 0 |
Eisenstein series | 24 | 24 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 24 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1512, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1512.1.ef.a | $6$ | $0.755$ | \(\Q(\zeta_{18})\) | $D_{9}$ | \(\Q(\sqrt{-14}) \) | None | \(0\) | \(-3\) | \(6\) | \(0\) | \(q-\zeta_{18}^{5}q^{2}+\zeta_{18}^{6}q^{3}-\zeta_{18}q^{4}+(1+\cdots)q^{5}+\cdots\) |
1512.1.ef.b | $6$ | $0.755$ | \(\Q(\zeta_{18})\) | $D_{9}$ | \(\Q(\sqrt{-14}) \) | None | \(0\) | \(3\) | \(-6\) | \(0\) | \(q-\zeta_{18}^{5}q^{2}-\zeta_{18}^{6}q^{3}-\zeta_{18}q^{4}+(-1+\cdots)q^{5}+\cdots\) |
1512.1.ef.c | $12$ | $0.755$ | \(\Q(\zeta_{36})\) | $D_{18}$ | \(\Q(\sqrt{-14}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{36}^{10}q^{2}+\zeta_{36}^{3}q^{3}-\zeta_{36}^{2}q^{4}+\cdots\) |