Properties

Label 1512.2.a.o.1.1
Level $1512$
Weight $2$
Character 1512.1
Self dual yes
Analytic conductor $12.073$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1512,2,Mod(1,1512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1512, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1512.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.0733807856\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.64575\) of defining polynomial
Character \(\chi\) \(=\) 1512.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.64575 q^{5} -1.00000 q^{7} +0.645751 q^{11} +5.29150 q^{13} -1.00000 q^{19} -1.35425 q^{23} +2.00000 q^{25} -6.00000 q^{29} +2.29150 q^{31} +2.64575 q^{35} -2.29150 q^{37} -8.64575 q^{41} -7.29150 q^{43} -11.2915 q^{47} +1.00000 q^{49} -1.70850 q^{55} +3.29150 q^{59} -6.58301 q^{61} -14.0000 q^{65} -1.29150 q^{67} -13.2288 q^{71} +0.708497 q^{73} -0.645751 q^{77} -11.2915 q^{79} -10.0000 q^{83} +13.9373 q^{89} -5.29150 q^{91} +2.64575 q^{95} +18.5830 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{7} - 4 q^{11} - 2 q^{19} - 8 q^{23} + 4 q^{25} - 12 q^{29} - 6 q^{31} + 6 q^{37} - 12 q^{41} - 4 q^{43} - 12 q^{47} + 2 q^{49} - 14 q^{55} - 4 q^{59} + 8 q^{61} - 28 q^{65} + 8 q^{67} + 12 q^{73}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.64575 −1.18322 −0.591608 0.806226i \(-0.701507\pi\)
−0.591608 + 0.806226i \(0.701507\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.645751 0.194701 0.0973507 0.995250i \(-0.468963\pi\)
0.0973507 + 0.995250i \(0.468963\pi\)
\(12\) 0 0
\(13\) 5.29150 1.46760 0.733799 0.679366i \(-0.237745\pi\)
0.733799 + 0.679366i \(0.237745\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.35425 −0.282380 −0.141190 0.989982i \(-0.545093\pi\)
−0.141190 + 0.989982i \(0.545093\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 2.29150 0.411566 0.205783 0.978598i \(-0.434026\pi\)
0.205783 + 0.978598i \(0.434026\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.64575 0.447214
\(36\) 0 0
\(37\) −2.29150 −0.376721 −0.188360 0.982100i \(-0.560317\pi\)
−0.188360 + 0.982100i \(0.560317\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.64575 −1.35024 −0.675120 0.737708i \(-0.735908\pi\)
−0.675120 + 0.737708i \(0.735908\pi\)
\(42\) 0 0
\(43\) −7.29150 −1.11194 −0.555972 0.831201i \(-0.687654\pi\)
−0.555972 + 0.831201i \(0.687654\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.2915 −1.64703 −0.823517 0.567291i \(-0.807992\pi\)
−0.823517 + 0.567291i \(0.807992\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −1.70850 −0.230374
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.29150 0.428517 0.214259 0.976777i \(-0.431266\pi\)
0.214259 + 0.976777i \(0.431266\pi\)
\(60\) 0 0
\(61\) −6.58301 −0.842867 −0.421434 0.906859i \(-0.638473\pi\)
−0.421434 + 0.906859i \(0.638473\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −14.0000 −1.73649
\(66\) 0 0
\(67\) −1.29150 −0.157782 −0.0788911 0.996883i \(-0.525138\pi\)
−0.0788911 + 0.996883i \(0.525138\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −13.2288 −1.56996 −0.784982 0.619518i \(-0.787328\pi\)
−0.784982 + 0.619518i \(0.787328\pi\)
\(72\) 0 0
\(73\) 0.708497 0.0829233 0.0414617 0.999140i \(-0.486799\pi\)
0.0414617 + 0.999140i \(0.486799\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.645751 −0.0735902
\(78\) 0 0
\(79\) −11.2915 −1.27039 −0.635197 0.772350i \(-0.719081\pi\)
−0.635197 + 0.772350i \(0.719081\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.0000 −1.09764 −0.548821 0.835940i \(-0.684923\pi\)
−0.548821 + 0.835940i \(0.684923\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.9373 1.47735 0.738673 0.674064i \(-0.235453\pi\)
0.738673 + 0.674064i \(0.235453\pi\)
\(90\) 0 0
\(91\) −5.29150 −0.554700
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.64575 0.271448
\(96\) 0 0
\(97\) 18.5830 1.88682 0.943409 0.331631i \(-0.107599\pi\)
0.943409 + 0.331631i \(0.107599\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) −4.29150 −0.422854 −0.211427 0.977394i \(-0.567811\pi\)
−0.211427 + 0.977394i \(0.567811\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.70850 −0.261840 −0.130920 0.991393i \(-0.541793\pi\)
−0.130920 + 0.991393i \(0.541793\pi\)
\(108\) 0 0
\(109\) 14.8745 1.42472 0.712360 0.701815i \(-0.247626\pi\)
0.712360 + 0.701815i \(0.247626\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.8745 1.11706 0.558530 0.829484i \(-0.311366\pi\)
0.558530 + 0.829484i \(0.311366\pi\)
\(114\) 0 0
\(115\) 3.58301 0.334117
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.5830 −0.962091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.93725 0.709930
\(126\) 0 0
\(127\) −17.2915 −1.53437 −0.767186 0.641424i \(-0.778344\pi\)
−0.767186 + 0.641424i \(0.778344\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.70850 0.411383 0.205692 0.978617i \(-0.434056\pi\)
0.205692 + 0.978617i \(0.434056\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.5830 −1.07504 −0.537519 0.843251i \(-0.680638\pi\)
−0.537519 + 0.843251i \(0.680638\pi\)
\(138\) 0 0
\(139\) 10.5830 0.897639 0.448819 0.893622i \(-0.351845\pi\)
0.448819 + 0.893622i \(0.351845\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.41699 0.285743
\(144\) 0 0
\(145\) 15.8745 1.31831
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −15.8745 −1.30049 −0.650245 0.759724i \(-0.725334\pi\)
−0.650245 + 0.759724i \(0.725334\pi\)
\(150\) 0 0
\(151\) 0.583005 0.0474443 0.0237221 0.999719i \(-0.492448\pi\)
0.0237221 + 0.999719i \(0.492448\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.06275 −0.486971
\(156\) 0 0
\(157\) 9.29150 0.741543 0.370771 0.928724i \(-0.379093\pi\)
0.370771 + 0.928724i \(0.379093\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.35425 0.106730
\(162\) 0 0
\(163\) 9.29150 0.727767 0.363883 0.931445i \(-0.381451\pi\)
0.363883 + 0.931445i \(0.381451\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.2915 −1.33806 −0.669028 0.743237i \(-0.733290\pi\)
−0.669028 + 0.743237i \(0.733290\pi\)
\(168\) 0 0
\(169\) 15.0000 1.15385
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.5203 1.10395 0.551977 0.833859i \(-0.313873\pi\)
0.551977 + 0.833859i \(0.313873\pi\)
\(174\) 0 0
\(175\) −2.00000 −0.151186
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.7085 0.800391 0.400195 0.916430i \(-0.368942\pi\)
0.400195 + 0.916430i \(0.368942\pi\)
\(180\) 0 0
\(181\) 3.41699 0.253983 0.126992 0.991904i \(-0.459468\pi\)
0.126992 + 0.991904i \(0.459468\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.06275 0.445742
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −26.6458 −1.92802 −0.964009 0.265868i \(-0.914341\pi\)
−0.964009 + 0.265868i \(0.914341\pi\)
\(192\) 0 0
\(193\) −20.5830 −1.48160 −0.740799 0.671727i \(-0.765553\pi\)
−0.740799 + 0.671727i \(0.765553\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.29150 0.661992 0.330996 0.943632i \(-0.392615\pi\)
0.330996 + 0.943632i \(0.392615\pi\)
\(198\) 0 0
\(199\) −24.8745 −1.76331 −0.881654 0.471897i \(-0.843569\pi\)
−0.881654 + 0.471897i \(0.843569\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.00000 0.421117
\(204\) 0 0
\(205\) 22.8745 1.59762
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.645751 −0.0446676
\(210\) 0 0
\(211\) 6.00000 0.413057 0.206529 0.978441i \(-0.433783\pi\)
0.206529 + 0.978441i \(0.433783\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 19.2915 1.31567
\(216\) 0 0
\(217\) −2.29150 −0.155557
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −24.2915 −1.62668 −0.813340 0.581789i \(-0.802353\pi\)
−0.813340 + 0.581789i \(0.802353\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 13.2915 0.882188 0.441094 0.897461i \(-0.354591\pi\)
0.441094 + 0.897461i \(0.354591\pi\)
\(228\) 0 0
\(229\) −26.5830 −1.75665 −0.878327 0.478060i \(-0.841340\pi\)
−0.878327 + 0.478060i \(0.841340\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.2915 −0.870755 −0.435378 0.900248i \(-0.643385\pi\)
−0.435378 + 0.900248i \(0.643385\pi\)
\(234\) 0 0
\(235\) 29.8745 1.94880
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.7085 0.692675 0.346338 0.938110i \(-0.387425\pi\)
0.346338 + 0.938110i \(0.387425\pi\)
\(240\) 0 0
\(241\) 12.7085 0.818626 0.409313 0.912394i \(-0.365768\pi\)
0.409313 + 0.912394i \(0.365768\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.64575 −0.169031
\(246\) 0 0
\(247\) −5.29150 −0.336690
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.5830 1.17295 0.586474 0.809968i \(-0.300515\pi\)
0.586474 + 0.809968i \(0.300515\pi\)
\(252\) 0 0
\(253\) −0.874508 −0.0549798
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 31.2288 1.94800 0.973998 0.226556i \(-0.0727466\pi\)
0.973998 + 0.226556i \(0.0727466\pi\)
\(258\) 0 0
\(259\) 2.29150 0.142387
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.2288 1.06237 0.531185 0.847256i \(-0.321747\pi\)
0.531185 + 0.847256i \(0.321747\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 26.6458 1.62462 0.812310 0.583226i \(-0.198210\pi\)
0.812310 + 0.583226i \(0.198210\pi\)
\(270\) 0 0
\(271\) −5.41699 −0.329059 −0.164529 0.986372i \(-0.552611\pi\)
−0.164529 + 0.986372i \(0.552611\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.29150 0.0778805
\(276\) 0 0
\(277\) −14.2915 −0.858693 −0.429347 0.903140i \(-0.641256\pi\)
−0.429347 + 0.903140i \(0.641256\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −21.8745 −1.30492 −0.652462 0.757822i \(-0.726264\pi\)
−0.652462 + 0.757822i \(0.726264\pi\)
\(282\) 0 0
\(283\) −2.58301 −0.153544 −0.0767719 0.997049i \(-0.524461\pi\)
−0.0767719 + 0.997049i \(0.524461\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.64575 0.510343
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.41699 −0.316464 −0.158232 0.987402i \(-0.550579\pi\)
−0.158232 + 0.987402i \(0.550579\pi\)
\(294\) 0 0
\(295\) −8.70850 −0.507028
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.16601 −0.414421
\(300\) 0 0
\(301\) 7.29150 0.420275
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 17.4170 0.997294
\(306\) 0 0
\(307\) −18.1660 −1.03679 −0.518394 0.855142i \(-0.673470\pi\)
−0.518394 + 0.855142i \(0.673470\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.5830 1.16716 0.583578 0.812057i \(-0.301652\pi\)
0.583578 + 0.812057i \(0.301652\pi\)
\(312\) 0 0
\(313\) 13.2915 0.751280 0.375640 0.926766i \(-0.377423\pi\)
0.375640 + 0.926766i \(0.377423\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −20.7085 −1.16311 −0.581553 0.813509i \(-0.697555\pi\)
−0.581553 + 0.813509i \(0.697555\pi\)
\(318\) 0 0
\(319\) −3.87451 −0.216931
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 10.5830 0.587040
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11.2915 0.622521
\(330\) 0 0
\(331\) −10.5830 −0.581695 −0.290847 0.956769i \(-0.593937\pi\)
−0.290847 + 0.956769i \(0.593937\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.41699 0.186690
\(336\) 0 0
\(337\) −6.41699 −0.349556 −0.174778 0.984608i \(-0.555921\pi\)
−0.174778 + 0.984608i \(0.555921\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.47974 0.0801325
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.35425 0.394797 0.197398 0.980323i \(-0.436751\pi\)
0.197398 + 0.980323i \(0.436751\pi\)
\(348\) 0 0
\(349\) −0.583005 −0.0312076 −0.0156038 0.999878i \(-0.504967\pi\)
−0.0156038 + 0.999878i \(0.504967\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.06275 0.109789 0.0548944 0.998492i \(-0.482518\pi\)
0.0548944 + 0.998492i \(0.482518\pi\)
\(354\) 0 0
\(355\) 35.0000 1.85761
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.8745 0.837824 0.418912 0.908027i \(-0.362411\pi\)
0.418912 + 0.908027i \(0.362411\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.87451 −0.0981162
\(366\) 0 0
\(367\) −26.2915 −1.37241 −0.686203 0.727410i \(-0.740724\pi\)
−0.686203 + 0.727410i \(0.740724\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 10.8745 0.563061 0.281530 0.959552i \(-0.409158\pi\)
0.281530 + 0.959552i \(0.409158\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −31.7490 −1.63516
\(378\) 0 0
\(379\) 17.8745 0.918152 0.459076 0.888397i \(-0.348181\pi\)
0.459076 + 0.888397i \(0.348181\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.70850 0.138398 0.0691989 0.997603i \(-0.477956\pi\)
0.0691989 + 0.997603i \(0.477956\pi\)
\(384\) 0 0
\(385\) 1.70850 0.0870731
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 28.0000 1.41966 0.709828 0.704375i \(-0.248773\pi\)
0.709828 + 0.704375i \(0.248773\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 29.8745 1.50315
\(396\) 0 0
\(397\) 10.0000 0.501886 0.250943 0.968002i \(-0.419259\pi\)
0.250943 + 0.968002i \(0.419259\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 19.1660 0.957105 0.478552 0.878059i \(-0.341162\pi\)
0.478552 + 0.878059i \(0.341162\pi\)
\(402\) 0 0
\(403\) 12.1255 0.604014
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.47974 −0.0733480
\(408\) 0 0
\(409\) 13.8745 0.686050 0.343025 0.939326i \(-0.388548\pi\)
0.343025 + 0.939326i \(0.388548\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.29150 −0.161964
\(414\) 0 0
\(415\) 26.4575 1.29875
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −25.2915 −1.23557 −0.617785 0.786347i \(-0.711970\pi\)
−0.617785 + 0.786347i \(0.711970\pi\)
\(420\) 0 0
\(421\) 4.29150 0.209155 0.104578 0.994517i \(-0.466651\pi\)
0.104578 + 0.994517i \(0.466651\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6.58301 0.318574
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 25.1033 1.20918 0.604591 0.796536i \(-0.293337\pi\)
0.604591 + 0.796536i \(0.293337\pi\)
\(432\) 0 0
\(433\) −23.8745 −1.14734 −0.573668 0.819088i \(-0.694480\pi\)
−0.573668 + 0.819088i \(0.694480\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.35425 0.0647825
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −35.2288 −1.67377 −0.836884 0.547380i \(-0.815625\pi\)
−0.836884 + 0.547380i \(0.815625\pi\)
\(444\) 0 0
\(445\) −36.8745 −1.74802
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 26.4575 1.24861 0.624304 0.781182i \(-0.285383\pi\)
0.624304 + 0.781182i \(0.285383\pi\)
\(450\) 0 0
\(451\) −5.58301 −0.262893
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 14.0000 0.656330
\(456\) 0 0
\(457\) 1.00000 0.0467780 0.0233890 0.999726i \(-0.492554\pi\)
0.0233890 + 0.999726i \(0.492554\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 39.6863 1.84837 0.924187 0.381940i \(-0.124744\pi\)
0.924187 + 0.381940i \(0.124744\pi\)
\(462\) 0 0
\(463\) 33.7490 1.56845 0.784225 0.620477i \(-0.213061\pi\)
0.784225 + 0.620477i \(0.213061\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.87451 −0.271840 −0.135920 0.990720i \(-0.543399\pi\)
−0.135920 + 0.990720i \(0.543399\pi\)
\(468\) 0 0
\(469\) 1.29150 0.0596361
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.70850 −0.216497
\(474\) 0 0
\(475\) −2.00000 −0.0917663
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) −12.1255 −0.552875
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −49.1660 −2.23251
\(486\) 0 0
\(487\) 23.2915 1.05544 0.527719 0.849419i \(-0.323047\pi\)
0.527719 + 0.849419i \(0.323047\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −29.8118 −1.34539 −0.672693 0.739922i \(-0.734863\pi\)
−0.672693 + 0.739922i \(0.734863\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.2288 0.593391
\(498\) 0 0
\(499\) 35.2915 1.57986 0.789932 0.613194i \(-0.210116\pi\)
0.789932 + 0.613194i \(0.210116\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −20.5830 −0.917751 −0.458875 0.888501i \(-0.651748\pi\)
−0.458875 + 0.888501i \(0.651748\pi\)
\(504\) 0 0
\(505\) 10.5830 0.470938
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 21.4170 0.949292 0.474646 0.880177i \(-0.342576\pi\)
0.474646 + 0.880177i \(0.342576\pi\)
\(510\) 0 0
\(511\) −0.708497 −0.0313421
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.3542 0.500328
\(516\) 0 0
\(517\) −7.29150 −0.320680
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.9373 0.610602 0.305301 0.952256i \(-0.401243\pi\)
0.305301 + 0.952256i \(0.401243\pi\)
\(522\) 0 0
\(523\) 6.41699 0.280596 0.140298 0.990109i \(-0.455194\pi\)
0.140298 + 0.990109i \(0.455194\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −21.1660 −0.920261
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −45.7490 −1.98161
\(534\) 0 0
\(535\) 7.16601 0.309814
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.645751 0.0278145
\(540\) 0 0
\(541\) 20.2915 0.872400 0.436200 0.899850i \(-0.356324\pi\)
0.436200 + 0.899850i \(0.356324\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −39.3542 −1.68575
\(546\) 0 0
\(547\) 6.58301 0.281469 0.140734 0.990047i \(-0.455054\pi\)
0.140734 + 0.990047i \(0.455054\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 11.2915 0.480164
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.4575 0.782070 0.391035 0.920376i \(-0.372117\pi\)
0.391035 + 0.920376i \(0.372117\pi\)
\(558\) 0 0
\(559\) −38.5830 −1.63189
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −23.1660 −0.976331 −0.488165 0.872751i \(-0.662334\pi\)
−0.488165 + 0.872751i \(0.662334\pi\)
\(564\) 0 0
\(565\) −31.4170 −1.32172
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.45751 0.270713 0.135357 0.990797i \(-0.456782\pi\)
0.135357 + 0.990797i \(0.456782\pi\)
\(570\) 0 0
\(571\) 22.0000 0.920671 0.460336 0.887745i \(-0.347729\pi\)
0.460336 + 0.887745i \(0.347729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.70850 −0.112952
\(576\) 0 0
\(577\) −20.5830 −0.856882 −0.428441 0.903570i \(-0.640937\pi\)
−0.428441 + 0.903570i \(0.640937\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10.0000 0.414870
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.87451 −0.159918 −0.0799590 0.996798i \(-0.525479\pi\)
−0.0799590 + 0.996798i \(0.525479\pi\)
\(588\) 0 0
\(589\) −2.29150 −0.0944197
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −24.6458 −1.01208 −0.506040 0.862510i \(-0.668891\pi\)
−0.506040 + 0.862510i \(0.668891\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −35.8118 −1.46323 −0.731614 0.681719i \(-0.761233\pi\)
−0.731614 + 0.681719i \(0.761233\pi\)
\(600\) 0 0
\(601\) 4.12549 0.168282 0.0841412 0.996454i \(-0.473185\pi\)
0.0841412 + 0.996454i \(0.473185\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 28.0000 1.13836
\(606\) 0 0
\(607\) 13.4170 0.544579 0.272290 0.962215i \(-0.412219\pi\)
0.272290 + 0.962215i \(0.412219\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −59.7490 −2.41719
\(612\) 0 0
\(613\) −29.7085 −1.19991 −0.599957 0.800032i \(-0.704816\pi\)
−0.599957 + 0.800032i \(0.704816\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 19.2915 0.776647 0.388323 0.921523i \(-0.373054\pi\)
0.388323 + 0.921523i \(0.373054\pi\)
\(618\) 0 0
\(619\) 0.416995 0.0167604 0.00838022 0.999965i \(-0.497332\pi\)
0.00838022 + 0.999965i \(0.497332\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −13.9373 −0.558384
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −47.0405 −1.87265 −0.936327 0.351130i \(-0.885798\pi\)
−0.936327 + 0.351130i \(0.885798\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 45.7490 1.81549
\(636\) 0 0
\(637\) 5.29150 0.209657
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.70850 0.106979 0.0534896 0.998568i \(-0.482966\pi\)
0.0534896 + 0.998568i \(0.482966\pi\)
\(642\) 0 0
\(643\) 7.00000 0.276053 0.138027 0.990429i \(-0.455924\pi\)
0.138027 + 0.990429i \(0.455924\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23.2915 −0.915683 −0.457842 0.889034i \(-0.651377\pi\)
−0.457842 + 0.889034i \(0.651377\pi\)
\(648\) 0 0
\(649\) 2.12549 0.0834329
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −16.7085 −0.653854 −0.326927 0.945050i \(-0.606013\pi\)
−0.326927 + 0.945050i \(0.606013\pi\)
\(654\) 0 0
\(655\) −12.4575 −0.486755
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 29.8118 1.16130 0.580651 0.814153i \(-0.302798\pi\)
0.580651 + 0.814153i \(0.302798\pi\)
\(660\) 0 0
\(661\) −19.8745 −0.773029 −0.386514 0.922283i \(-0.626321\pi\)
−0.386514 + 0.922283i \(0.626321\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.64575 −0.102598
\(666\) 0 0
\(667\) 8.12549 0.314620
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.25098 −0.164107
\(672\) 0 0
\(673\) 4.58301 0.176662 0.0883309 0.996091i \(-0.471847\pi\)
0.0883309 + 0.996091i \(0.471847\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.22876 0.200957 0.100479 0.994939i \(-0.467963\pi\)
0.100479 + 0.994939i \(0.467963\pi\)
\(678\) 0 0
\(679\) −18.5830 −0.713150
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −42.9778 −1.64450 −0.822249 0.569127i \(-0.807281\pi\)
−0.822249 + 0.569127i \(0.807281\pi\)
\(684\) 0 0
\(685\) 33.2915 1.27200
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 29.1660 1.10953 0.554764 0.832008i \(-0.312809\pi\)
0.554764 + 0.832008i \(0.312809\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −28.0000 −1.06210
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.4170 −0.884448 −0.442224 0.896905i \(-0.645810\pi\)
−0.442224 + 0.896905i \(0.645810\pi\)
\(702\) 0 0
\(703\) 2.29150 0.0864257
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.00000 0.150435
\(708\) 0 0
\(709\) −24.8745 −0.934182 −0.467091 0.884209i \(-0.654698\pi\)
−0.467091 + 0.884209i \(0.654698\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.10326 −0.116218
\(714\) 0 0
\(715\) −9.04052 −0.338096
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 31.0405 1.15762 0.578808 0.815464i \(-0.303518\pi\)
0.578808 + 0.815464i \(0.303518\pi\)
\(720\) 0 0
\(721\) 4.29150 0.159824
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12.0000 −0.445669
\(726\) 0 0
\(727\) −1.41699 −0.0525534 −0.0262767 0.999655i \(-0.508365\pi\)
−0.0262767 + 0.999655i \(0.508365\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −49.8745 −1.84216 −0.921078 0.389377i \(-0.872690\pi\)
−0.921078 + 0.389377i \(0.872690\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.833990 −0.0307204
\(738\) 0 0
\(739\) 34.0000 1.25071 0.625355 0.780340i \(-0.284954\pi\)
0.625355 + 0.780340i \(0.284954\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.93725 0.144444 0.0722219 0.997389i \(-0.476991\pi\)
0.0722219 + 0.997389i \(0.476991\pi\)
\(744\) 0 0
\(745\) 42.0000 1.53876
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.70850 0.0989663
\(750\) 0 0
\(751\) −16.7085 −0.609702 −0.304851 0.952400i \(-0.598607\pi\)
−0.304851 + 0.952400i \(0.598607\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.54249 −0.0561368
\(756\) 0 0
\(757\) 28.5830 1.03887 0.519433 0.854511i \(-0.326143\pi\)
0.519433 + 0.854511i \(0.326143\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12.0000 −0.435000 −0.217500 0.976060i \(-0.569790\pi\)
−0.217500 + 0.976060i \(0.569790\pi\)
\(762\) 0 0
\(763\) −14.8745 −0.538493
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 17.4170 0.628891
\(768\) 0 0
\(769\) −18.7085 −0.674646 −0.337323 0.941389i \(-0.609521\pi\)
−0.337323 + 0.941389i \(0.609521\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.81176 0.280970 0.140485 0.990083i \(-0.455134\pi\)
0.140485 + 0.990083i \(0.455134\pi\)
\(774\) 0 0
\(775\) 4.58301 0.164626
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.64575 0.309766
\(780\) 0 0
\(781\) −8.54249 −0.305674
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −24.5830 −0.877405
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −11.8745 −0.422209
\(792\) 0 0
\(793\) −34.8340 −1.23699
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −43.9373 −1.55634 −0.778169 0.628055i \(-0.783851\pi\)
−0.778169 + 0.628055i \(0.783851\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.457513 0.0161453
\(804\) 0 0
\(805\) −3.58301 −0.126284
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −28.5830 −1.00492 −0.502462 0.864599i \(-0.667573\pi\)
−0.502462 + 0.864599i \(0.667573\pi\)
\(810\) 0 0
\(811\) 1.58301 0.0555868 0.0277934 0.999614i \(-0.491152\pi\)
0.0277934 + 0.999614i \(0.491152\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −24.5830 −0.861105
\(816\) 0 0
\(817\) 7.29150 0.255097
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −39.0405 −1.36252 −0.681262 0.732040i \(-0.738568\pi\)
−0.681262 + 0.732040i \(0.738568\pi\)
\(822\) 0 0
\(823\) 31.1660 1.08638 0.543189 0.839610i \(-0.317217\pi\)
0.543189 + 0.839610i \(0.317217\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −29.9373 −1.04102 −0.520510 0.853855i \(-0.674258\pi\)
−0.520510 + 0.853855i \(0.674258\pi\)
\(828\) 0 0
\(829\) −1.87451 −0.0651043 −0.0325522 0.999470i \(-0.510364\pi\)
−0.0325522 + 0.999470i \(0.510364\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 45.7490 1.58321
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 42.0000 1.45000 0.725001 0.688748i \(-0.241839\pi\)
0.725001 + 0.688748i \(0.241839\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −39.6863 −1.36525
\(846\) 0 0
\(847\) 10.5830 0.363636
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.10326 0.106379
\(852\) 0 0
\(853\) 15.7490 0.539236 0.269618 0.962967i \(-0.413103\pi\)
0.269618 + 0.962967i \(0.413103\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.2288 −0.383567 −0.191784 0.981437i \(-0.561427\pi\)
−0.191784 + 0.981437i \(0.561427\pi\)
\(858\) 0 0
\(859\) 48.1660 1.64340 0.821702 0.569918i \(-0.193025\pi\)
0.821702 + 0.569918i \(0.193025\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −53.2915 −1.81406 −0.907032 0.421062i \(-0.861658\pi\)
−0.907032 + 0.421062i \(0.861658\pi\)
\(864\) 0 0
\(865\) −38.4170 −1.30622
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7.29150 −0.247347
\(870\) 0 0
\(871\) −6.83399 −0.231561
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −7.93725 −0.268328
\(876\) 0 0
\(877\) 4.83399 0.163232 0.0816161 0.996664i \(-0.473992\pi\)
0.0816161 + 0.996664i \(0.473992\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −13.9373 −0.469558 −0.234779 0.972049i \(-0.575437\pi\)
−0.234779 + 0.972049i \(0.575437\pi\)
\(882\) 0 0
\(883\) 11.7490 0.395386 0.197693 0.980264i \(-0.436655\pi\)
0.197693 + 0.980264i \(0.436655\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 32.5830 1.09403 0.547015 0.837123i \(-0.315764\pi\)
0.547015 + 0.837123i \(0.315764\pi\)
\(888\) 0 0
\(889\) 17.2915 0.579938
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 11.2915 0.377856
\(894\) 0 0
\(895\) −28.3320 −0.947035
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −13.7490 −0.458555
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.04052 −0.300517
\(906\) 0 0
\(907\) 45.7490 1.51907 0.759536 0.650466i \(-0.225426\pi\)
0.759536 + 0.650466i \(0.225426\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −8.12549 −0.269210 −0.134605 0.990899i \(-0.542976\pi\)
−0.134605 + 0.990899i \(0.542976\pi\)
\(912\) 0 0
\(913\) −6.45751 −0.213712
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.70850 −0.155488
\(918\) 0 0
\(919\) −11.7490 −0.387564 −0.193782 0.981045i \(-0.562075\pi\)
−0.193782 + 0.981045i \(0.562075\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −70.0000 −2.30408
\(924\) 0 0
\(925\) −4.58301 −0.150688
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 33.4170 1.09638 0.548188 0.836355i \(-0.315318\pi\)
0.548188 + 0.836355i \(0.315318\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 47.7490 1.55989 0.779946 0.625847i \(-0.215246\pi\)
0.779946 + 0.625847i \(0.215246\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −9.47974 −0.309031 −0.154515 0.987990i \(-0.549382\pi\)
−0.154515 + 0.987990i \(0.549382\pi\)
\(942\) 0 0
\(943\) 11.7085 0.381281
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −8.77124 −0.285027 −0.142514 0.989793i \(-0.545518\pi\)
−0.142514 + 0.989793i \(0.545518\pi\)
\(948\) 0 0
\(949\) 3.74902 0.121698
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7.16601 0.232130 0.116065 0.993242i \(-0.462972\pi\)
0.116065 + 0.993242i \(0.462972\pi\)
\(954\) 0 0
\(955\) 70.4980 2.28126
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 12.5830 0.406326
\(960\) 0 0
\(961\) −25.7490 −0.830613
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 54.4575 1.75305
\(966\) 0 0
\(967\) −47.1660 −1.51676 −0.758378 0.651815i \(-0.774008\pi\)
−0.758378 + 0.651815i \(0.774008\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.16601 0.229968 0.114984 0.993367i \(-0.463318\pi\)
0.114984 + 0.993367i \(0.463318\pi\)
\(972\) 0 0
\(973\) −10.5830 −0.339276
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −22.5830 −0.722494 −0.361247 0.932470i \(-0.617649\pi\)
−0.361247 + 0.932470i \(0.617649\pi\)
\(978\) 0 0
\(979\) 9.00000 0.287641
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 52.4575 1.67313 0.836567 0.547864i \(-0.184559\pi\)
0.836567 + 0.547864i \(0.184559\pi\)
\(984\) 0 0
\(985\) −24.5830 −0.783280
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.87451 0.313991
\(990\) 0 0
\(991\) 10.7085 0.340167 0.170083 0.985430i \(-0.445596\pi\)
0.170083 + 0.985430i \(0.445596\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 65.8118 2.08637
\(996\) 0 0
\(997\) −38.0000 −1.20347 −0.601736 0.798695i \(-0.705524\pi\)
−0.601736 + 0.798695i \(0.705524\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.a.o.1.1 2
3.2 odd 2 1512.2.a.p.1.2 yes 2
4.3 odd 2 3024.2.a.bk.1.1 2
12.11 even 2 3024.2.a.bh.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1512.2.a.o.1.1 2 1.1 even 1 trivial
1512.2.a.p.1.2 yes 2 3.2 odd 2
3024.2.a.bh.1.2 2 12.11 even 2
3024.2.a.bk.1.1 2 4.3 odd 2