Properties

Label 1512.2.a.o.1.2
Level $1512$
Weight $2$
Character 1512.1
Self dual yes
Analytic conductor $12.073$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1512,2,Mod(1,1512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1512, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1512.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.0733807856\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.64575\) of defining polynomial
Character \(\chi\) \(=\) 1512.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.64575 q^{5} -1.00000 q^{7} -4.64575 q^{11} -5.29150 q^{13} -1.00000 q^{19} -6.64575 q^{23} +2.00000 q^{25} -6.00000 q^{29} -8.29150 q^{31} -2.64575 q^{35} +8.29150 q^{37} -3.35425 q^{41} +3.29150 q^{43} -0.708497 q^{47} +1.00000 q^{49} -12.2915 q^{55} -7.29150 q^{59} +14.5830 q^{61} -14.0000 q^{65} +9.29150 q^{67} +13.2288 q^{71} +11.2915 q^{73} +4.64575 q^{77} -0.708497 q^{79} -10.0000 q^{83} -1.93725 q^{89} +5.29150 q^{91} -2.64575 q^{95} -2.58301 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{7} - 4 q^{11} - 2 q^{19} - 8 q^{23} + 4 q^{25} - 12 q^{29} - 6 q^{31} + 6 q^{37} - 12 q^{41} - 4 q^{43} - 12 q^{47} + 2 q^{49} - 14 q^{55} - 4 q^{59} + 8 q^{61} - 28 q^{65} + 8 q^{67} + 12 q^{73}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.64575 1.18322 0.591608 0.806226i \(-0.298493\pi\)
0.591608 + 0.806226i \(0.298493\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.64575 −1.40075 −0.700373 0.713777i \(-0.746983\pi\)
−0.700373 + 0.713777i \(0.746983\pi\)
\(12\) 0 0
\(13\) −5.29150 −1.46760 −0.733799 0.679366i \(-0.762255\pi\)
−0.733799 + 0.679366i \(0.762255\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.64575 −1.38573 −0.692867 0.721065i \(-0.743653\pi\)
−0.692867 + 0.721065i \(0.743653\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −8.29150 −1.48920 −0.744599 0.667512i \(-0.767359\pi\)
−0.744599 + 0.667512i \(0.767359\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.64575 −0.447214
\(36\) 0 0
\(37\) 8.29150 1.36311 0.681557 0.731765i \(-0.261303\pi\)
0.681557 + 0.731765i \(0.261303\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.35425 −0.523846 −0.261923 0.965089i \(-0.584357\pi\)
−0.261923 + 0.965089i \(0.584357\pi\)
\(42\) 0 0
\(43\) 3.29150 0.501949 0.250975 0.967994i \(-0.419249\pi\)
0.250975 + 0.967994i \(0.419249\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.708497 −0.103345 −0.0516725 0.998664i \(-0.516455\pi\)
−0.0516725 + 0.998664i \(0.516455\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −12.2915 −1.65739
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.29150 −0.949273 −0.474636 0.880182i \(-0.657420\pi\)
−0.474636 + 0.880182i \(0.657420\pi\)
\(60\) 0 0
\(61\) 14.5830 1.86716 0.933581 0.358366i \(-0.116666\pi\)
0.933581 + 0.358366i \(0.116666\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −14.0000 −1.73649
\(66\) 0 0
\(67\) 9.29150 1.13514 0.567569 0.823326i \(-0.307884\pi\)
0.567569 + 0.823326i \(0.307884\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 13.2288 1.56996 0.784982 0.619518i \(-0.212672\pi\)
0.784982 + 0.619518i \(0.212672\pi\)
\(72\) 0 0
\(73\) 11.2915 1.32157 0.660785 0.750575i \(-0.270223\pi\)
0.660785 + 0.750575i \(0.270223\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.64575 0.529432
\(78\) 0 0
\(79\) −0.708497 −0.0797122 −0.0398561 0.999205i \(-0.512690\pi\)
−0.0398561 + 0.999205i \(0.512690\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10.0000 −1.09764 −0.548821 0.835940i \(-0.684923\pi\)
−0.548821 + 0.835940i \(0.684923\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.93725 −0.205349 −0.102674 0.994715i \(-0.532740\pi\)
−0.102674 + 0.994715i \(0.532740\pi\)
\(90\) 0 0
\(91\) 5.29150 0.554700
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.64575 −0.271448
\(96\) 0 0
\(97\) −2.58301 −0.262264 −0.131132 0.991365i \(-0.541861\pi\)
−0.131132 + 0.991365i \(0.541861\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) 6.29150 0.619920 0.309960 0.950750i \(-0.399684\pi\)
0.309960 + 0.950750i \(0.399684\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.2915 −1.28494 −0.642469 0.766312i \(-0.722090\pi\)
−0.642469 + 0.766312i \(0.722090\pi\)
\(108\) 0 0
\(109\) −16.8745 −1.61628 −0.808142 0.588987i \(-0.799527\pi\)
−0.808142 + 0.588987i \(0.799527\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −19.8745 −1.86964 −0.934818 0.355127i \(-0.884438\pi\)
−0.934818 + 0.355127i \(0.884438\pi\)
\(114\) 0 0
\(115\) −17.5830 −1.63962
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.5830 0.962091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.93725 −0.709930
\(126\) 0 0
\(127\) −6.70850 −0.595283 −0.297641 0.954678i \(-0.596200\pi\)
−0.297641 + 0.954678i \(0.596200\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.2915 1.33602 0.668012 0.744150i \(-0.267145\pi\)
0.668012 + 0.744150i \(0.267145\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.58301 0.733296 0.366648 0.930360i \(-0.380505\pi\)
0.366648 + 0.930360i \(0.380505\pi\)
\(138\) 0 0
\(139\) −10.5830 −0.897639 −0.448819 0.893622i \(-0.648155\pi\)
−0.448819 + 0.893622i \(0.648155\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 24.5830 2.05573
\(144\) 0 0
\(145\) −15.8745 −1.31831
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.8745 1.30049 0.650245 0.759724i \(-0.274666\pi\)
0.650245 + 0.759724i \(0.274666\pi\)
\(150\) 0 0
\(151\) −20.5830 −1.67502 −0.837511 0.546421i \(-0.815990\pi\)
−0.837511 + 0.546421i \(0.815990\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −21.9373 −1.76204
\(156\) 0 0
\(157\) −1.29150 −0.103073 −0.0515366 0.998671i \(-0.516412\pi\)
−0.0515366 + 0.998671i \(0.516412\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.64575 0.523759
\(162\) 0 0
\(163\) −1.29150 −0.101158 −0.0505791 0.998720i \(-0.516107\pi\)
−0.0505791 + 0.998720i \(0.516107\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.70850 −0.519119 −0.259560 0.965727i \(-0.583577\pi\)
−0.259560 + 0.965727i \(0.583577\pi\)
\(168\) 0 0
\(169\) 15.0000 1.15385
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −22.5203 −1.71218 −0.856092 0.516824i \(-0.827114\pi\)
−0.856092 + 0.516824i \(0.827114\pi\)
\(174\) 0 0
\(175\) −2.00000 −0.151186
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 21.2915 1.59140 0.795701 0.605690i \(-0.207103\pi\)
0.795701 + 0.605690i \(0.207103\pi\)
\(180\) 0 0
\(181\) 24.5830 1.82724 0.913620 0.406569i \(-0.133275\pi\)
0.913620 + 0.406569i \(0.133275\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 21.9373 1.61286
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −21.3542 −1.54514 −0.772570 0.634930i \(-0.781029\pi\)
−0.772570 + 0.634930i \(0.781029\pi\)
\(192\) 0 0
\(193\) 0.583005 0.0419656 0.0209828 0.999780i \(-0.493320\pi\)
0.0209828 + 0.999780i \(0.493320\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.29150 −0.0920158 −0.0460079 0.998941i \(-0.514650\pi\)
−0.0460079 + 0.998941i \(0.514650\pi\)
\(198\) 0 0
\(199\) 6.87451 0.487321 0.243660 0.969861i \(-0.421652\pi\)
0.243660 + 0.969861i \(0.421652\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.00000 0.421117
\(204\) 0 0
\(205\) −8.87451 −0.619823
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.64575 0.321353
\(210\) 0 0
\(211\) 6.00000 0.413057 0.206529 0.978441i \(-0.433783\pi\)
0.206529 + 0.978441i \(0.433783\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.70850 0.593915
\(216\) 0 0
\(217\) 8.29150 0.562864
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −13.7085 −0.917989 −0.458994 0.888439i \(-0.651790\pi\)
−0.458994 + 0.888439i \(0.651790\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.70850 0.179769 0.0898846 0.995952i \(-0.471350\pi\)
0.0898846 + 0.995952i \(0.471350\pi\)
\(228\) 0 0
\(229\) −5.41699 −0.357965 −0.178983 0.983852i \(-0.557281\pi\)
−0.178983 + 0.983852i \(0.557281\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.70850 −0.177440 −0.0887198 0.996057i \(-0.528278\pi\)
−0.0887198 + 0.996057i \(0.528278\pi\)
\(234\) 0 0
\(235\) −1.87451 −0.122279
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 21.2915 1.37723 0.688616 0.725126i \(-0.258218\pi\)
0.688616 + 0.725126i \(0.258218\pi\)
\(240\) 0 0
\(241\) 23.2915 1.50034 0.750169 0.661246i \(-0.229972\pi\)
0.750169 + 0.661246i \(0.229972\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.64575 0.169031
\(246\) 0 0
\(247\) 5.29150 0.336690
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.58301 −0.163038 −0.0815189 0.996672i \(-0.525977\pi\)
−0.0815189 + 0.996672i \(0.525977\pi\)
\(252\) 0 0
\(253\) 30.8745 1.94106
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.77124 0.297622 0.148811 0.988866i \(-0.452455\pi\)
0.148811 + 0.988866i \(0.452455\pi\)
\(258\) 0 0
\(259\) −8.29150 −0.515209
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.22876 −0.569070 −0.284535 0.958666i \(-0.591839\pi\)
−0.284535 + 0.958666i \(0.591839\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.3542 1.30199 0.650996 0.759081i \(-0.274352\pi\)
0.650996 + 0.759081i \(0.274352\pi\)
\(270\) 0 0
\(271\) −26.5830 −1.61480 −0.807401 0.590003i \(-0.799127\pi\)
−0.807401 + 0.590003i \(0.799127\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.29150 −0.560299
\(276\) 0 0
\(277\) −3.70850 −0.222822 −0.111411 0.993774i \(-0.535537\pi\)
−0.111411 + 0.993774i \(0.535537\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.87451 0.589064 0.294532 0.955642i \(-0.404836\pi\)
0.294532 + 0.955642i \(0.404836\pi\)
\(282\) 0 0
\(283\) 18.5830 1.10465 0.552323 0.833631i \(-0.313742\pi\)
0.552323 + 0.833631i \(0.313742\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.35425 0.197995
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −26.5830 −1.55300 −0.776498 0.630120i \(-0.783006\pi\)
−0.776498 + 0.630120i \(0.783006\pi\)
\(294\) 0 0
\(295\) −19.2915 −1.12319
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 35.1660 2.03370
\(300\) 0 0
\(301\) −3.29150 −0.189719
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 38.5830 2.20926
\(306\) 0 0
\(307\) 24.1660 1.37923 0.689614 0.724178i \(-0.257780\pi\)
0.689614 + 0.724178i \(0.257780\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −0.583005 −0.0330592 −0.0165296 0.999863i \(-0.505262\pi\)
−0.0165296 + 0.999863i \(0.505262\pi\)
\(312\) 0 0
\(313\) 2.70850 0.153093 0.0765467 0.997066i \(-0.475611\pi\)
0.0765467 + 0.997066i \(0.475611\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −31.2915 −1.75751 −0.878753 0.477277i \(-0.841624\pi\)
−0.878753 + 0.477277i \(0.841624\pi\)
\(318\) 0 0
\(319\) 27.8745 1.56067
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −10.5830 −0.587040
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.708497 0.0390607
\(330\) 0 0
\(331\) 10.5830 0.581695 0.290847 0.956769i \(-0.406063\pi\)
0.290847 + 0.956769i \(0.406063\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 24.5830 1.34311
\(336\) 0 0
\(337\) −27.5830 −1.50254 −0.751271 0.659994i \(-0.770559\pi\)
−0.751271 + 0.659994i \(0.770559\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 38.5203 2.08599
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.6458 0.678859 0.339430 0.940631i \(-0.389766\pi\)
0.339430 + 0.940631i \(0.389766\pi\)
\(348\) 0 0
\(349\) 20.5830 1.10178 0.550892 0.834577i \(-0.314288\pi\)
0.550892 + 0.834577i \(0.314288\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.9373 0.954704 0.477352 0.878712i \(-0.341597\pi\)
0.477352 + 0.878712i \(0.341597\pi\)
\(354\) 0 0
\(355\) 35.0000 1.85761
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.8745 −0.837824 −0.418912 0.908027i \(-0.637589\pi\)
−0.418912 + 0.908027i \(0.637589\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 29.8745 1.56370
\(366\) 0 0
\(367\) −15.7085 −0.819977 −0.409988 0.912091i \(-0.634467\pi\)
−0.409988 + 0.912091i \(0.634467\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −20.8745 −1.08084 −0.540421 0.841395i \(-0.681735\pi\)
−0.540421 + 0.841395i \(0.681735\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 31.7490 1.63516
\(378\) 0 0
\(379\) −13.8745 −0.712686 −0.356343 0.934355i \(-0.615976\pi\)
−0.356343 + 0.934355i \(0.615976\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 13.2915 0.679164 0.339582 0.940576i \(-0.389714\pi\)
0.339582 + 0.940576i \(0.389714\pi\)
\(384\) 0 0
\(385\) 12.2915 0.626433
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 28.0000 1.41966 0.709828 0.704375i \(-0.248773\pi\)
0.709828 + 0.704375i \(0.248773\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.87451 −0.0943167
\(396\) 0 0
\(397\) 10.0000 0.501886 0.250943 0.968002i \(-0.419259\pi\)
0.250943 + 0.968002i \(0.419259\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −23.1660 −1.15686 −0.578428 0.815734i \(-0.696333\pi\)
−0.578428 + 0.815734i \(0.696333\pi\)
\(402\) 0 0
\(403\) 43.8745 2.18554
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −38.5203 −1.90938
\(408\) 0 0
\(409\) −17.8745 −0.883838 −0.441919 0.897055i \(-0.645702\pi\)
−0.441919 + 0.897055i \(0.645702\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.29150 0.358791
\(414\) 0 0
\(415\) −26.4575 −1.29875
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −14.7085 −0.718557 −0.359279 0.933230i \(-0.616977\pi\)
−0.359279 + 0.933230i \(0.616977\pi\)
\(420\) 0 0
\(421\) −6.29150 −0.306629 −0.153315 0.988177i \(-0.548995\pi\)
−0.153315 + 0.988177i \(0.548995\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −14.5830 −0.705721
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −33.1033 −1.59453 −0.797264 0.603631i \(-0.793720\pi\)
−0.797264 + 0.603631i \(0.793720\pi\)
\(432\) 0 0
\(433\) 7.87451 0.378425 0.189212 0.981936i \(-0.439407\pi\)
0.189212 + 0.981936i \(0.439407\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.64575 0.317909
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.77124 −0.416734 −0.208367 0.978051i \(-0.566815\pi\)
−0.208367 + 0.978051i \(0.566815\pi\)
\(444\) 0 0
\(445\) −5.12549 −0.242972
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −26.4575 −1.24861 −0.624304 0.781182i \(-0.714617\pi\)
−0.624304 + 0.781182i \(0.714617\pi\)
\(450\) 0 0
\(451\) 15.5830 0.733775
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 14.0000 0.656330
\(456\) 0 0
\(457\) 1.00000 0.0467780 0.0233890 0.999726i \(-0.492554\pi\)
0.0233890 + 0.999726i \(0.492554\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −39.6863 −1.84837 −0.924187 0.381940i \(-0.875256\pi\)
−0.924187 + 0.381940i \(0.875256\pi\)
\(462\) 0 0
\(463\) −29.7490 −1.38255 −0.691277 0.722590i \(-0.742952\pi\)
−0.691277 + 0.722590i \(0.742952\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 25.8745 1.19733 0.598665 0.801000i \(-0.295698\pi\)
0.598665 + 0.801000i \(0.295698\pi\)
\(468\) 0 0
\(469\) −9.29150 −0.429042
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −15.2915 −0.703104
\(474\) 0 0
\(475\) −2.00000 −0.0917663
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) −43.8745 −2.00051
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.83399 −0.310315
\(486\) 0 0
\(487\) 12.7085 0.575877 0.287938 0.957649i \(-0.407030\pi\)
0.287938 + 0.957649i \(0.407030\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17.8118 0.803834 0.401917 0.915676i \(-0.368344\pi\)
0.401917 + 0.915676i \(0.368344\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −13.2288 −0.593391
\(498\) 0 0
\(499\) 24.7085 1.10610 0.553052 0.833147i \(-0.313463\pi\)
0.553052 + 0.833147i \(0.313463\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0.583005 0.0259949 0.0129975 0.999916i \(-0.495863\pi\)
0.0129975 + 0.999916i \(0.495863\pi\)
\(504\) 0 0
\(505\) −10.5830 −0.470938
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 42.5830 1.88746 0.943729 0.330719i \(-0.107291\pi\)
0.943729 + 0.330719i \(0.107291\pi\)
\(510\) 0 0
\(511\) −11.2915 −0.499507
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.6458 0.733499
\(516\) 0 0
\(517\) 3.29150 0.144760
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.93725 −0.0848726 −0.0424363 0.999099i \(-0.513512\pi\)
−0.0424363 + 0.999099i \(0.513512\pi\)
\(522\) 0 0
\(523\) 27.5830 1.20612 0.603060 0.797696i \(-0.293948\pi\)
0.603060 + 0.797696i \(0.293948\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 21.1660 0.920261
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17.7490 0.768795
\(534\) 0 0
\(535\) −35.1660 −1.52036
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.64575 −0.200107
\(540\) 0 0
\(541\) 9.70850 0.417401 0.208700 0.977980i \(-0.433077\pi\)
0.208700 + 0.977980i \(0.433077\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −44.6458 −1.91241
\(546\) 0 0
\(547\) −14.5830 −0.623524 −0.311762 0.950160i \(-0.600919\pi\)
−0.311762 + 0.950160i \(0.600919\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 0.708497 0.0301284
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −34.4575 −1.46001 −0.730006 0.683441i \(-0.760483\pi\)
−0.730006 + 0.683441i \(0.760483\pi\)
\(558\) 0 0
\(559\) −17.4170 −0.736660
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.1660 0.807751 0.403876 0.914814i \(-0.367663\pi\)
0.403876 + 0.914814i \(0.367663\pi\)
\(564\) 0 0
\(565\) −52.5830 −2.21218
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −46.4575 −1.94760 −0.973800 0.227406i \(-0.926976\pi\)
−0.973800 + 0.227406i \(0.926976\pi\)
\(570\) 0 0
\(571\) 22.0000 0.920671 0.460336 0.887745i \(-0.347729\pi\)
0.460336 + 0.887745i \(0.347729\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −13.2915 −0.554294
\(576\) 0 0
\(577\) 0.583005 0.0242708 0.0121354 0.999926i \(-0.496137\pi\)
0.0121354 + 0.999926i \(0.496137\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10.0000 0.414870
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 27.8745 1.15050 0.575252 0.817976i \(-0.304904\pi\)
0.575252 + 0.817976i \(0.304904\pi\)
\(588\) 0 0
\(589\) 8.29150 0.341645
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −19.3542 −0.794784 −0.397392 0.917649i \(-0.630085\pi\)
−0.397392 + 0.917649i \(0.630085\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11.8118 0.482616 0.241308 0.970449i \(-0.422424\pi\)
0.241308 + 0.970449i \(0.422424\pi\)
\(600\) 0 0
\(601\) 35.8745 1.46335 0.731676 0.681653i \(-0.238738\pi\)
0.731676 + 0.681653i \(0.238738\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 28.0000 1.13836
\(606\) 0 0
\(607\) 34.5830 1.40368 0.701840 0.712334i \(-0.252362\pi\)
0.701840 + 0.712334i \(0.252362\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.74902 0.151669
\(612\) 0 0
\(613\) −40.2915 −1.62736 −0.813679 0.581314i \(-0.802539\pi\)
−0.813679 + 0.581314i \(0.802539\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.70850 0.350591 0.175295 0.984516i \(-0.443912\pi\)
0.175295 + 0.984516i \(0.443912\pi\)
\(618\) 0 0
\(619\) 21.5830 0.867494 0.433747 0.901035i \(-0.357191\pi\)
0.433747 + 0.901035i \(0.357191\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.93725 0.0776144
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 27.0405 1.07647 0.538233 0.842796i \(-0.319092\pi\)
0.538233 + 0.842796i \(0.319092\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −17.7490 −0.704348
\(636\) 0 0
\(637\) −5.29150 −0.209657
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 13.2915 0.524983 0.262491 0.964934i \(-0.415456\pi\)
0.262491 + 0.964934i \(0.415456\pi\)
\(642\) 0 0
\(643\) 7.00000 0.276053 0.138027 0.990429i \(-0.455924\pi\)
0.138027 + 0.990429i \(0.455924\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12.7085 −0.499623 −0.249811 0.968295i \(-0.580369\pi\)
−0.249811 + 0.968295i \(0.580369\pi\)
\(648\) 0 0
\(649\) 33.8745 1.32969
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −27.2915 −1.06800 −0.534000 0.845485i \(-0.679312\pi\)
−0.534000 + 0.845485i \(0.679312\pi\)
\(654\) 0 0
\(655\) 40.4575 1.58081
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −17.8118 −0.693848 −0.346924 0.937893i \(-0.612774\pi\)
−0.346924 + 0.937893i \(0.612774\pi\)
\(660\) 0 0
\(661\) 11.8745 0.461865 0.230932 0.972970i \(-0.425822\pi\)
0.230932 + 0.972970i \(0.425822\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.64575 0.102598
\(666\) 0 0
\(667\) 39.8745 1.54395
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −67.7490 −2.61542
\(672\) 0 0
\(673\) −16.5830 −0.639228 −0.319614 0.947548i \(-0.603553\pi\)
−0.319614 + 0.947548i \(0.603553\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −21.2288 −0.815887 −0.407944 0.913007i \(-0.633754\pi\)
−0.407944 + 0.913007i \(0.633754\pi\)
\(678\) 0 0
\(679\) 2.58301 0.0991266
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 46.9778 1.79755 0.898777 0.438406i \(-0.144457\pi\)
0.898777 + 0.438406i \(0.144457\pi\)
\(684\) 0 0
\(685\) 22.7085 0.867647
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −13.1660 −0.500859 −0.250429 0.968135i \(-0.580572\pi\)
−0.250429 + 0.968135i \(0.580572\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −28.0000 −1.06210
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −44.5830 −1.68388 −0.841938 0.539574i \(-0.818585\pi\)
−0.841938 + 0.539574i \(0.818585\pi\)
\(702\) 0 0
\(703\) −8.29150 −0.312720
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.00000 0.150435
\(708\) 0 0
\(709\) 6.87451 0.258178 0.129089 0.991633i \(-0.458795\pi\)
0.129089 + 0.991633i \(0.458795\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 55.1033 2.06363
\(714\) 0 0
\(715\) 65.0405 2.43238
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −43.0405 −1.60514 −0.802570 0.596558i \(-0.796535\pi\)
−0.802570 + 0.596558i \(0.796535\pi\)
\(720\) 0 0
\(721\) −6.29150 −0.234308
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12.0000 −0.445669
\(726\) 0 0
\(727\) −22.5830 −0.837557 −0.418779 0.908088i \(-0.637542\pi\)
−0.418779 + 0.908088i \(0.637542\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −18.1255 −0.669480 −0.334740 0.942310i \(-0.608649\pi\)
−0.334740 + 0.942310i \(0.608649\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −43.1660 −1.59004
\(738\) 0 0
\(739\) 34.0000 1.25071 0.625355 0.780340i \(-0.284954\pi\)
0.625355 + 0.780340i \(0.284954\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.9373 −0.437935 −0.218968 0.975732i \(-0.570269\pi\)
−0.218968 + 0.975732i \(0.570269\pi\)
\(744\) 0 0
\(745\) 42.0000 1.53876
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 13.2915 0.485661
\(750\) 0 0
\(751\) −27.2915 −0.995881 −0.497941 0.867211i \(-0.665910\pi\)
−0.497941 + 0.867211i \(0.665910\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −54.4575 −1.98191
\(756\) 0 0
\(757\) 7.41699 0.269575 0.134788 0.990875i \(-0.456965\pi\)
0.134788 + 0.990875i \(0.456965\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12.0000 −0.435000 −0.217500 0.976060i \(-0.569790\pi\)
−0.217500 + 0.976060i \(0.569790\pi\)
\(762\) 0 0
\(763\) 16.8745 0.610898
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 38.5830 1.39315
\(768\) 0 0
\(769\) −29.2915 −1.05628 −0.528139 0.849158i \(-0.677110\pi\)
−0.528139 + 0.849158i \(0.677110\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −39.8118 −1.43193 −0.715965 0.698136i \(-0.754013\pi\)
−0.715965 + 0.698136i \(0.754013\pi\)
\(774\) 0 0
\(775\) −16.5830 −0.595679
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.35425 0.120178
\(780\) 0 0
\(781\) −61.4575 −2.19912
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3.41699 −0.121958
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 19.8745 0.706656
\(792\) 0 0
\(793\) −77.1660 −2.74025
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −28.0627 −0.994033 −0.497017 0.867741i \(-0.665571\pi\)
−0.497017 + 0.867741i \(0.665571\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −52.4575 −1.85119
\(804\) 0 0
\(805\) 17.5830 0.619720
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −7.41699 −0.260768 −0.130384 0.991464i \(-0.541621\pi\)
−0.130384 + 0.991464i \(0.541621\pi\)
\(810\) 0 0
\(811\) −19.5830 −0.687652 −0.343826 0.939033i \(-0.611723\pi\)
−0.343826 + 0.939033i \(0.611723\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.41699 −0.119692
\(816\) 0 0
\(817\) −3.29150 −0.115155
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 35.0405 1.22292 0.611461 0.791274i \(-0.290582\pi\)
0.611461 + 0.791274i \(0.290582\pi\)
\(822\) 0 0
\(823\) −11.1660 −0.389223 −0.194611 0.980880i \(-0.562345\pi\)
−0.194611 + 0.980880i \(0.562345\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −14.0627 −0.489010 −0.244505 0.969648i \(-0.578625\pi\)
−0.244505 + 0.969648i \(0.578625\pi\)
\(828\) 0 0
\(829\) 29.8745 1.03758 0.518792 0.854900i \(-0.326382\pi\)
0.518792 + 0.854900i \(0.326382\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −17.7490 −0.614230
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 42.0000 1.45000 0.725001 0.688748i \(-0.241839\pi\)
0.725001 + 0.688748i \(0.241839\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 39.6863 1.36525
\(846\) 0 0
\(847\) −10.5830 −0.363636
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −55.1033 −1.88892
\(852\) 0 0
\(853\) −47.7490 −1.63490 −0.817448 0.576003i \(-0.804612\pi\)
−0.817448 + 0.576003i \(0.804612\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15.2288 0.520204 0.260102 0.965581i \(-0.416244\pi\)
0.260102 + 0.965581i \(0.416244\pi\)
\(858\) 0 0
\(859\) 5.83399 0.199053 0.0995266 0.995035i \(-0.468267\pi\)
0.0995266 + 0.995035i \(0.468267\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −42.7085 −1.45381 −0.726907 0.686736i \(-0.759043\pi\)
−0.726907 + 0.686736i \(0.759043\pi\)
\(864\) 0 0
\(865\) −59.5830 −2.02588
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.29150 0.111657
\(870\) 0 0
\(871\) −49.1660 −1.66593
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 7.93725 0.268328
\(876\) 0 0
\(877\) 47.1660 1.59268 0.796342 0.604847i \(-0.206766\pi\)
0.796342 + 0.604847i \(0.206766\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.93725 0.0652677 0.0326339 0.999467i \(-0.489610\pi\)
0.0326339 + 0.999467i \(0.489610\pi\)
\(882\) 0 0
\(883\) −51.7490 −1.74149 −0.870747 0.491732i \(-0.836364\pi\)
−0.870747 + 0.491732i \(0.836364\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.4170 0.383345 0.191673 0.981459i \(-0.438609\pi\)
0.191673 + 0.981459i \(0.438609\pi\)
\(888\) 0 0
\(889\) 6.70850 0.224996
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.708497 0.0237090
\(894\) 0 0
\(895\) 56.3320 1.88297
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 49.7490 1.65922
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 65.0405 2.16202
\(906\) 0 0
\(907\) −17.7490 −0.589346 −0.294673 0.955598i \(-0.595211\pi\)
−0.294673 + 0.955598i \(0.595211\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −39.8745 −1.32110 −0.660551 0.750781i \(-0.729677\pi\)
−0.660551 + 0.750781i \(0.729677\pi\)
\(912\) 0 0
\(913\) 46.4575 1.53752
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.2915 −0.504970
\(918\) 0 0
\(919\) 51.7490 1.70704 0.853521 0.521058i \(-0.174462\pi\)
0.853521 + 0.521058i \(0.174462\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −70.0000 −2.30408
\(924\) 0 0
\(925\) 16.5830 0.545246
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 54.5830 1.79081 0.895405 0.445252i \(-0.146886\pi\)
0.895405 + 0.445252i \(0.146886\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −15.7490 −0.514498 −0.257249 0.966345i \(-0.582816\pi\)
−0.257249 + 0.966345i \(0.582816\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −46.5203 −1.51652 −0.758259 0.651954i \(-0.773950\pi\)
−0.758259 + 0.651954i \(0.773950\pi\)
\(942\) 0 0
\(943\) 22.2915 0.725911
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −35.2288 −1.14478 −0.572390 0.819981i \(-0.693984\pi\)
−0.572390 + 0.819981i \(0.693984\pi\)
\(948\) 0 0
\(949\) −59.7490 −1.93954
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −35.1660 −1.13914 −0.569569 0.821943i \(-0.692890\pi\)
−0.569569 + 0.821943i \(0.692890\pi\)
\(954\) 0 0
\(955\) −56.4980 −1.82823
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −8.58301 −0.277160
\(960\) 0 0
\(961\) 37.7490 1.21771
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.54249 0.0496544
\(966\) 0 0
\(967\) −4.83399 −0.155451 −0.0777253 0.996975i \(-0.524766\pi\)
−0.0777253 + 0.996975i \(0.524766\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −35.1660 −1.12853 −0.564265 0.825593i \(-0.690841\pi\)
−0.564265 + 0.825593i \(0.690841\pi\)
\(972\) 0 0
\(973\) 10.5830 0.339276
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.41699 −0.0453337 −0.0226668 0.999743i \(-0.507216\pi\)
−0.0226668 + 0.999743i \(0.507216\pi\)
\(978\) 0 0
\(979\) 9.00000 0.287641
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −0.457513 −0.0145924 −0.00729620 0.999973i \(-0.502322\pi\)
−0.00729620 + 0.999973i \(0.502322\pi\)
\(984\) 0 0
\(985\) −3.41699 −0.108875
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −21.8745 −0.695569
\(990\) 0 0
\(991\) 21.2915 0.676347 0.338173 0.941084i \(-0.390191\pi\)
0.338173 + 0.941084i \(0.390191\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 18.1882 0.576606
\(996\) 0 0
\(997\) −38.0000 −1.20347 −0.601736 0.798695i \(-0.705524\pi\)
−0.601736 + 0.798695i \(0.705524\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.a.o.1.2 2
3.2 odd 2 1512.2.a.p.1.1 yes 2
4.3 odd 2 3024.2.a.bk.1.2 2
12.11 even 2 3024.2.a.bh.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1512.2.a.o.1.2 2 1.1 even 1 trivial
1512.2.a.p.1.1 yes 2 3.2 odd 2
3024.2.a.bh.1.1 2 12.11 even 2
3024.2.a.bk.1.2 2 4.3 odd 2