Defining parameters
Level: | \( N \) | \(=\) | \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1512.bl (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1512, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 624 | 64 | 560 |
Cusp forms | 528 | 64 | 464 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1512, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1512.2.bl.a | $16$ | $12.073$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q-\beta _{5}q^{5}-\beta _{2}q^{7}+(-\beta _{7}-\beta _{12})q^{11}+\cdots\) |
1512.2.bl.b | $16$ | $12.073$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q+(-\beta _{1}+\beta _{13}-\beta _{14})q^{5}+(-\beta _{2}-\beta _{3}+\cdots)q^{7}+\cdots\) |
1512.2.bl.c | $16$ | $12.073$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+\beta _{14}q^{5}+(\beta _{4}-\beta _{5}-\beta _{7}+\beta _{9})q^{7}+\cdots\) |
1512.2.bl.d | $16$ | $12.073$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+(\beta _{4}+\beta _{10})q^{5}-\beta _{2}q^{7}+(-\beta _{1}-\beta _{6}+\cdots)q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1512, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1512, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 2}\)