Properties

Label 1512.2.bl
Level $1512$
Weight $2$
Character orbit 1512.bl
Rep. character $\chi_{1512}(593,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $64$
Newform subspaces $4$
Sturm bound $576$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.bl (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(576\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1512, [\chi])\).

Total New Old
Modular forms 624 64 560
Cusp forms 528 64 464
Eisenstein series 96 0 96

Trace form

\( 64 q + 4 q^{7} - 6 q^{19} - 42 q^{25} + 42 q^{31} - 2 q^{37} - 40 q^{43} - 16 q^{49} + 14 q^{67} + 30 q^{73} - 2 q^{79} + 16 q^{85} - 12 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1512, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1512.2.bl.a 1512.bl 21.g $16$ $12.073$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 1512.2.bl.a \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{5}q^{5}-\beta _{2}q^{7}+(-\beta _{7}-\beta _{12})q^{11}+\cdots\)
1512.2.bl.b 1512.bl 21.g $16$ $12.073$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1512.2.bl.b \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{1}+\beta _{13}-\beta _{14})q^{5}+(-\beta _{2}-\beta _{3}+\cdots)q^{7}+\cdots\)
1512.2.bl.c 1512.bl 21.g $16$ $12.073$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 1512.2.bl.c \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{14}q^{5}+(\beta _{4}-\beta _{5}-\beta _{7}+\beta _{9})q^{7}+\cdots\)
1512.2.bl.d 1512.bl 21.g $16$ $12.073$ 16.0.\(\cdots\).1 None 1512.2.bl.d \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{4}+\beta _{10})q^{5}-\beta _{2}q^{7}+(-\beta _{1}-\beta _{6}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1512, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1512, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 2}\)