Properties

Label 1512.2.p
Level $1512$
Weight $2$
Character orbit 1512.p
Rep. character $\chi_{1512}(811,\cdot)$
Character field $\Q$
Dimension $128$
Sturm bound $576$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.p (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 56 \)
Character field: \(\Q\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1512, [\chi])\).

Total New Old
Modular forms 300 128 172
Cusp forms 276 128 148
Eisenstein series 24 0 24

Trace form

\( 128 q + 16 q^{16} - 28 q^{22} + 128 q^{25} + 14 q^{28} - 36 q^{46} + 8 q^{49} + 20 q^{58} + 24 q^{64} + 64 q^{67} - 18 q^{70} - 4 q^{88} + 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1512, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1512, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1512, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)