Properties

Label 1512.2.q
Level 15121512
Weight 22
Character orbit 1512.q
Rep. character χ1512(793,)\chi_{1512}(793,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 4848
Newform subspaces 44
Sturm bound 576576
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1512=23337 1512 = 2^{3} \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1512.q (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 63 63
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 4 4
Sturm bound: 576576
Trace bound: 55
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(1512,[χ])M_{2}(1512, [\chi]).

Total New Old
Modular forms 624 48 576
Cusp forms 528 48 480
Eisenstein series 96 0 96

Trace form

48q4q58q17+4q2324q25+6q2912q3112q3518q41+6q43+12q476q494q53+12q5572q5912q61+24q65+40q7128q77+20q95+O(q100) 48 q - 4 q^{5} - 8 q^{17} + 4 q^{23} - 24 q^{25} + 6 q^{29} - 12 q^{31} - 12 q^{35} - 18 q^{41} + 6 q^{43} + 12 q^{47} - 6 q^{49} - 4 q^{53} + 12 q^{55} - 72 q^{59} - 12 q^{61} + 24 q^{65} + 40 q^{71} - 28 q^{77}+ \cdots - 20 q^{95}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1512,[χ])S_{2}^{\mathrm{new}}(1512, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1512.2.q.a 1512.q 63.h 22 12.07312.073 Q(3)\Q(\sqrt{-3}) None 504.2.q.b 00 00 1-1 4-4 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+ζ6)q5+(3+2ζ6)q7+3ζ6q11+q+(-1+\zeta_{6})q^{5}+(-3+2\zeta_{6})q^{7}+3\zeta_{6}q^{11}+\cdots
1512.2.q.b 1512.q 63.h 22 12.07312.073 Q(3)\Q(\sqrt{-3}) None 504.2.q.a 00 00 11 44 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q5+(1+2ζ6)q73ζ6q11+q+(1-\zeta_{6})q^{5}+(1+2\zeta_{6})q^{7}-3\zeta_{6}q^{11}+\cdots
1512.2.q.c 1512.q 63.h 2222 12.07312.073 None 504.2.q.d 00 00 3-3 5-5 SU(2)[C3]\mathrm{SU}(2)[C_{3}]
1512.2.q.d 1512.q 63.h 2222 12.07312.073 None 504.2.q.c 00 00 1-1 55 SU(2)[C3]\mathrm{SU}(2)[C_{3}]

Decomposition of S2old(1512,[χ])S_{2}^{\mathrm{old}}(1512, [\chi]) into lower level spaces