Defining parameters
Level: | \( N \) | \(=\) | \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1512.q (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1512, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 624 | 48 | 576 |
Cusp forms | 528 | 48 | 480 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1512, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1512.2.q.a | $2$ | $12.073$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-1\) | \(-4\) | \(q+(-1+\zeta_{6})q^{5}+(-3+2\zeta_{6})q^{7}+3\zeta_{6}q^{11}+\cdots\) |
1512.2.q.b | $2$ | $12.073$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(1\) | \(4\) | \(q+(1-\zeta_{6})q^{5}+(1+2\zeta_{6})q^{7}-3\zeta_{6}q^{11}+\cdots\) |
1512.2.q.c | $22$ | $12.073$ | None | \(0\) | \(0\) | \(-3\) | \(-5\) | ||
1512.2.q.d | $22$ | $12.073$ | None | \(0\) | \(0\) | \(-1\) | \(5\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1512, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1512, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(756, [\chi])\)\(^{\oplus 2}\)