Properties

Label 152.4
Level 152
Weight 4
Dimension 1173
Nonzero newspaces 9
Newform subspaces 17
Sturm bound 5760
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 9 \)
Newform subspaces: \( 17 \)
Sturm bound: \(5760\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(152))\).

Total New Old
Modular forms 2268 1241 1027
Cusp forms 2052 1173 879
Eisenstein series 216 68 148

Trace form

\( 1173 q - 14 q^{2} - 10 q^{3} + 6 q^{4} + 4 q^{5} - 74 q^{6} - 34 q^{7} - 98 q^{8} - 10 q^{9} + 94 q^{10} + 70 q^{11} + 94 q^{12} - 44 q^{13} - 50 q^{14} - 258 q^{15} - 50 q^{16} - 80 q^{17} - 22 q^{18}+ \cdots - 7097 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(152))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
152.4.a \(\chi_{152}(1, \cdot)\) 152.4.a.a 2 1
152.4.a.b 3
152.4.a.c 3
152.4.a.d 5
152.4.b \(\chi_{152}(75, \cdot)\) 152.4.b.a 2 1
152.4.b.b 56
152.4.c \(\chi_{152}(77, \cdot)\) 152.4.c.a 54 1
152.4.h \(\chi_{152}(151, \cdot)\) None 0 1
152.4.i \(\chi_{152}(49, \cdot)\) 152.4.i.a 14 2
152.4.i.b 16
152.4.j \(\chi_{152}(31, \cdot)\) None 0 2
152.4.o \(\chi_{152}(27, \cdot)\) 152.4.o.a 4 2
152.4.o.b 112
152.4.p \(\chi_{152}(45, \cdot)\) 152.4.p.a 116 2
152.4.q \(\chi_{152}(9, \cdot)\) 152.4.q.a 42 6
152.4.q.b 48
152.4.t \(\chi_{152}(5, \cdot)\) 152.4.t.a 348 6
152.4.v \(\chi_{152}(3, \cdot)\) 152.4.v.a 12 6
152.4.v.b 336
152.4.w \(\chi_{152}(15, \cdot)\) None 0 6

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(152))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(152)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(152))\)\(^{\oplus 1}\)