Defining parameters
Level: | \( N \) | = | \( 152 = 2^{3} \cdot 19 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 9 \) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(5760\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(152))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2268 | 1241 | 1027 |
Cusp forms | 2052 | 1173 | 879 |
Eisenstein series | 216 | 68 | 148 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(152))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(152))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(152)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(152))\)\(^{\oplus 1}\)