Defining parameters
Level: | \( N \) | \(=\) | \( 152 = 2^{3} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 152.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(152))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 104 | 23 | 81 |
Cusp forms | 96 | 23 | 73 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(19\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(6\) |
\(+\) | \(-\) | \(-\) | \(6\) |
\(-\) | \(+\) | \(-\) | \(7\) |
\(-\) | \(-\) | \(+\) | \(4\) |
Plus space | \(+\) | \(10\) | |
Minus space | \(-\) | \(13\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(152))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 19 | |||||||
152.6.a.a | $1$ | $24.378$ | \(\Q\) | None | \(0\) | \(-7\) | \(16\) | \(75\) | $-$ | $-$ | \(q-7q^{3}+2^{4}q^{5}+75q^{7}-194q^{9}+\cdots\) | |
152.6.a.b | $3$ | $24.378$ | 3.3.976277.1 | None | \(0\) | \(-7\) | \(58\) | \(-197\) | $-$ | $-$ | \(q+(-2+\beta _{1})q^{3}+(20+\beta _{1}+\beta _{2})q^{5}+\cdots\) | |
152.6.a.c | $6$ | $24.378$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(-4\) | \(-25\) | \(-161\) | $+$ | $+$ | \(q+(-1+\beta _{1})q^{3}+(-4-\beta _{3})q^{5}+(-26+\cdots)q^{7}+\cdots\) | |
152.6.a.d | $6$ | $24.378$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(0\) | \(23\) | \(0\) | \(133\) | $+$ | $-$ | \(q+(4-\beta _{1})q^{3}+(-\beta _{1}-\beta _{3})q^{5}+(23+\cdots)q^{7}+\cdots\) | |
152.6.a.e | $7$ | $24.378$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(0\) | \(-5\) | \(99\) | \(74\) | $-$ | $+$ | \(q+(-1+\beta _{1})q^{3}+(14+\beta _{1}+\beta _{2})q^{5}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(152))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(152)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 2}\)