Properties

Label 152.6.a
Level 152152
Weight 66
Character orbit 152.a
Rep. character χ152(1,)\chi_{152}(1,\cdot)
Character field Q\Q
Dimension 2323
Newform subspaces 55
Sturm bound 120120
Trace bound 33

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 152=2319 152 = 2^{3} \cdot 19
Weight: k k == 6 6
Character orbit: [χ][\chi] == 152.a (trivial)
Character field: Q\Q
Newform subspaces: 5 5
Sturm bound: 120120
Trace bound: 33
Distinguishing TpT_p: 33

Dimensions

The following table gives the dimensions of various subspaces of M6(Γ0(152))M_{6}(\Gamma_0(152)).

Total New Old
Modular forms 104 23 81
Cusp forms 96 23 73
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

221919FrickeDim
++++++66
++--66
-++-77
--++44
Plus space++1010
Minus space-1313

Trace form

23q+148q576q7+1645q9726q111178q13+2472q15+1974q171083q192928q21+1914q23+13475q25+9360q27+4042q29+11484q31+4940q33+173722q99+O(q100) 23 q + 148 q^{5} - 76 q^{7} + 1645 q^{9} - 726 q^{11} - 1178 q^{13} + 2472 q^{15} + 1974 q^{17} - 1083 q^{19} - 2928 q^{21} + 1914 q^{23} + 13475 q^{25} + 9360 q^{27} + 4042 q^{29} + 11484 q^{31} + 4940 q^{33}+ \cdots - 173722 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S6new(Γ0(152))S_{6}^{\mathrm{new}}(\Gamma_0(152)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 19
152.6.a.a 152.a 1.a 11 24.37824.378 Q\Q None 152.6.a.a 00 7-7 1616 7575 - - SU(2)\mathrm{SU}(2) q7q3+24q5+75q7194q9+q-7q^{3}+2^{4}q^{5}+75q^{7}-194q^{9}+\cdots
152.6.a.b 152.a 1.a 33 24.37824.378 3.3.976277.1 None 152.6.a.b 00 7-7 5858 197-197 - - SU(2)\mathrm{SU}(2) q+(2+β1)q3+(20+β1+β2)q5+q+(-2+\beta _{1})q^{3}+(20+\beta _{1}+\beta _{2})q^{5}+\cdots
152.6.a.c 152.a 1.a 66 24.37824.378 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 152.6.a.c 00 4-4 25-25 161-161 ++ ++ SU(2)\mathrm{SU}(2) q+(1+β1)q3+(4β3)q5+(26+)q7+q+(-1+\beta _{1})q^{3}+(-4-\beta _{3})q^{5}+(-26+\cdots)q^{7}+\cdots
152.6.a.d 152.a 1.a 66 24.37824.378 Q[x]/(x6)\mathbb{Q}[x]/(x^{6} - \cdots) None 152.6.a.d 00 2323 00 133133 ++ - SU(2)\mathrm{SU}(2) q+(4β1)q3+(β1β3)q5+(23+)q7+q+(4-\beta _{1})q^{3}+(-\beta _{1}-\beta _{3})q^{5}+(23+\cdots)q^{7}+\cdots
152.6.a.e 152.a 1.a 77 24.37824.378 Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots) None 152.6.a.e 00 5-5 9999 7474 - ++ SU(2)\mathrm{SU}(2) q+(1+β1)q3+(14+β1+β2)q5+q+(-1+\beta _{1})q^{3}+(14+\beta _{1}+\beta _{2})q^{5}+\cdots

Decomposition of S6old(Γ0(152))S_{6}^{\mathrm{old}}(\Gamma_0(152)) into lower level spaces

S6old(Γ0(152)) S_{6}^{\mathrm{old}}(\Gamma_0(152)) \simeq S6new(Γ0(4))S_{6}^{\mathrm{new}}(\Gamma_0(4))4^{\oplus 4}\oplusS6new(Γ0(8))S_{6}^{\mathrm{new}}(\Gamma_0(8))2^{\oplus 2}\oplusS6new(Γ0(19))S_{6}^{\mathrm{new}}(\Gamma_0(19))4^{\oplus 4}\oplusS6new(Γ0(38))S_{6}^{\mathrm{new}}(\Gamma_0(38))3^{\oplus 3}\oplusS6new(Γ0(76))S_{6}^{\mathrm{new}}(\Gamma_0(76))2^{\oplus 2}