Properties

Label 152.6.a
Level $152$
Weight $6$
Character orbit 152.a
Rep. character $\chi_{152}(1,\cdot)$
Character field $\Q$
Dimension $23$
Newform subspaces $5$
Sturm bound $120$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 152.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(120\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(152))\).

Total New Old
Modular forms 104 23 81
Cusp forms 96 23 73
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(19\)FrickeDim
\(+\)\(+\)\(+\)\(6\)
\(+\)\(-\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(7\)
\(-\)\(-\)\(+\)\(4\)
Plus space\(+\)\(10\)
Minus space\(-\)\(13\)

Trace form

\( 23 q + 148 q^{5} - 76 q^{7} + 1645 q^{9} - 726 q^{11} - 1178 q^{13} + 2472 q^{15} + 1974 q^{17} - 1083 q^{19} - 2928 q^{21} + 1914 q^{23} + 13475 q^{25} + 9360 q^{27} + 4042 q^{29} + 11484 q^{31} + 4940 q^{33}+ \cdots - 173722 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(152))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 19
152.6.a.a 152.a 1.a $1$ $24.378$ \(\Q\) None 152.6.a.a \(0\) \(-7\) \(16\) \(75\) $-$ $-$ $\mathrm{SU}(2)$ \(q-7q^{3}+2^{4}q^{5}+75q^{7}-194q^{9}+\cdots\)
152.6.a.b 152.a 1.a $3$ $24.378$ 3.3.976277.1 None 152.6.a.b \(0\) \(-7\) \(58\) \(-197\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{3}+(20+\beta _{1}+\beta _{2})q^{5}+\cdots\)
152.6.a.c 152.a 1.a $6$ $24.378$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 152.6.a.c \(0\) \(-4\) \(-25\) \(-161\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(-4-\beta _{3})q^{5}+(-26+\cdots)q^{7}+\cdots\)
152.6.a.d 152.a 1.a $6$ $24.378$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 152.6.a.d \(0\) \(23\) \(0\) \(133\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(4-\beta _{1})q^{3}+(-\beta _{1}-\beta _{3})q^{5}+(23+\cdots)q^{7}+\cdots\)
152.6.a.e 152.a 1.a $7$ $24.378$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 152.6.a.e \(0\) \(-5\) \(99\) \(74\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(14+\beta _{1}+\beta _{2})q^{5}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(152))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(152)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 2}\)