Properties

Label 152.8
Level 152
Weight 8
Dimension 2783
Nonzero newspaces 9
Sturm bound 11520
Trace bound 3

Downloads

Learn more

Defining parameters

Level: N N = 152=2319 152 = 2^{3} \cdot 19
Weight: k k = 8 8
Nonzero newspaces: 9 9
Sturm bound: 1152011520
Trace bound: 33

Dimensions

The following table gives the dimensions of various subspaces of M8(Γ1(152))M_{8}(\Gamma_1(152)).

Total New Old
Modular forms 5148 2851 2297
Cusp forms 4932 2783 2149
Eisenstein series 216 68 148

Trace form

2783q30q2+62q3250q4696q5554q6+4718q73042q83436q9+3294q10+11358q11+8158q12+9320q1324114q1487378q1570706q16++81624907q99+O(q100) 2783 q - 30 q^{2} + 62 q^{3} - 250 q^{4} - 696 q^{5} - 554 q^{6} + 4718 q^{7} - 3042 q^{8} - 3436 q^{9} + 3294 q^{10} + 11358 q^{11} + 8158 q^{12} + 9320 q^{13} - 24114 q^{14} - 87378 q^{15} - 70706 q^{16}+ \cdots + 81624907 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S8new(Γ1(152))S_{8}^{\mathrm{new}}(\Gamma_1(152))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
152.8.a χ152(1,)\chi_{152}(1, \cdot) 152.8.a.a 6 1
152.8.a.b 8
152.8.a.c 8
152.8.a.d 9
152.8.b χ152(75,)\chi_{152}(75, \cdot) n/a 138 1
152.8.c χ152(77,)\chi_{152}(77, \cdot) n/a 126 1
152.8.h χ152(151,)\chi_{152}(151, \cdot) None 0 1
152.8.i χ152(49,)\chi_{152}(49, \cdot) 152.8.i.a 34 2
152.8.i.b 36
152.8.j χ152(31,)\chi_{152}(31, \cdot) None 0 2
152.8.o χ152(27,)\chi_{152}(27, \cdot) n/a 276 2
152.8.p χ152(45,)\chi_{152}(45, \cdot) n/a 276 2
152.8.q χ152(9,)\chi_{152}(9, \cdot) n/a 210 6
152.8.t χ152(5,)\chi_{152}(5, \cdot) n/a 828 6
152.8.v χ152(3,)\chi_{152}(3, \cdot) n/a 828 6
152.8.w χ152(15,)\chi_{152}(15, \cdot) None 0 6

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S8old(Γ1(152))S_{8}^{\mathrm{old}}(\Gamma_1(152)) into lower level spaces