Properties

Label 152.8
Level 152
Weight 8
Dimension 2783
Nonzero newspaces 9
Sturm bound 11520
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 9 \)
Sturm bound: \(11520\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(152))\).

Total New Old
Modular forms 5148 2851 2297
Cusp forms 4932 2783 2149
Eisenstein series 216 68 148

Trace form

\( 2783 q - 30 q^{2} + 62 q^{3} - 250 q^{4} - 696 q^{5} - 554 q^{6} + 4718 q^{7} - 3042 q^{8} - 3436 q^{9} + 3294 q^{10} + 11358 q^{11} + 8158 q^{12} + 9320 q^{13} - 24114 q^{14} - 87378 q^{15} - 70706 q^{16}+ \cdots + 81624907 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(152))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
152.8.a \(\chi_{152}(1, \cdot)\) 152.8.a.a 6 1
152.8.a.b 8
152.8.a.c 8
152.8.a.d 9
152.8.b \(\chi_{152}(75, \cdot)\) n/a 138 1
152.8.c \(\chi_{152}(77, \cdot)\) n/a 126 1
152.8.h \(\chi_{152}(151, \cdot)\) None 0 1
152.8.i \(\chi_{152}(49, \cdot)\) 152.8.i.a 34 2
152.8.i.b 36
152.8.j \(\chi_{152}(31, \cdot)\) None 0 2
152.8.o \(\chi_{152}(27, \cdot)\) n/a 276 2
152.8.p \(\chi_{152}(45, \cdot)\) n/a 276 2
152.8.q \(\chi_{152}(9, \cdot)\) n/a 210 6
152.8.t \(\chi_{152}(5, \cdot)\) n/a 828 6
152.8.v \(\chi_{152}(3, \cdot)\) n/a 828 6
152.8.w \(\chi_{152}(15, \cdot)\) None 0 6

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(152))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(152)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(152))\)\(^{\oplus 1}\)