Defining parameters
Level: | \( N \) | = | \( 152 = 2^{3} \cdot 19 \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 9 \) | ||
Sturm bound: | \(11520\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(152))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5148 | 2851 | 2297 |
Cusp forms | 4932 | 2783 | 2149 |
Eisenstein series | 216 | 68 | 148 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(152))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
152.8.a | \(\chi_{152}(1, \cdot)\) | 152.8.a.a | 6 | 1 |
152.8.a.b | 8 | |||
152.8.a.c | 8 | |||
152.8.a.d | 9 | |||
152.8.b | \(\chi_{152}(75, \cdot)\) | n/a | 138 | 1 |
152.8.c | \(\chi_{152}(77, \cdot)\) | n/a | 126 | 1 |
152.8.h | \(\chi_{152}(151, \cdot)\) | None | 0 | 1 |
152.8.i | \(\chi_{152}(49, \cdot)\) | 152.8.i.a | 34 | 2 |
152.8.i.b | 36 | |||
152.8.j | \(\chi_{152}(31, \cdot)\) | None | 0 | 2 |
152.8.o | \(\chi_{152}(27, \cdot)\) | n/a | 276 | 2 |
152.8.p | \(\chi_{152}(45, \cdot)\) | n/a | 276 | 2 |
152.8.q | \(\chi_{152}(9, \cdot)\) | n/a | 210 | 6 |
152.8.t | \(\chi_{152}(5, \cdot)\) | n/a | 828 | 6 |
152.8.v | \(\chi_{152}(3, \cdot)\) | n/a | 828 | 6 |
152.8.w | \(\chi_{152}(15, \cdot)\) | None | 0 | 6 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(152))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(152)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(152))\)\(^{\oplus 1}\)