Properties

Label 1520.2
Level 1520
Weight 2
Dimension 34982
Nonzero newspaces 42
Sturm bound 276480
Trace bound 14

Downloads

Learn more

Defining parameters

Level: N N = 1520=24519 1520 = 2^{4} \cdot 5 \cdot 19
Weight: k k = 2 2
Nonzero newspaces: 42 42
Sturm bound: 276480276480
Trace bound: 1414

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(1520))M_{2}(\Gamma_1(1520)).

Total New Old
Modular forms 71136 35902 35234
Cusp forms 67105 34982 32123
Eisenstein series 4031 920 3111

Trace form

34982q64q250q356q4119q5168q642q740q810q992q10130q1172q1270q1372q1437q15216q16126q1748q18+198q99+O(q100) 34982 q - 64 q^{2} - 50 q^{3} - 56 q^{4} - 119 q^{5} - 168 q^{6} - 42 q^{7} - 40 q^{8} - 10 q^{9} - 92 q^{10} - 130 q^{11} - 72 q^{12} - 70 q^{13} - 72 q^{14} - 37 q^{15} - 216 q^{16} - 126 q^{17} - 48 q^{18}+ \cdots - 198 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ1(1520))S_{2}^{\mathrm{new}}(\Gamma_1(1520))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
1520.2.a χ1520(1,)\chi_{1520}(1, \cdot) 1520.2.a.a 1 1
1520.2.a.b 1
1520.2.a.c 1
1520.2.a.d 1
1520.2.a.e 1
1520.2.a.f 1
1520.2.a.g 1
1520.2.a.h 1
1520.2.a.i 1
1520.2.a.j 1
1520.2.a.k 2
1520.2.a.l 2
1520.2.a.m 2
1520.2.a.n 2
1520.2.a.o 2
1520.2.a.p 3
1520.2.a.q 3
1520.2.a.r 3
1520.2.a.s 3
1520.2.a.t 4
1520.2.d χ1520(609,)\chi_{1520}(609, \cdot) 1520.2.d.a 2 1
1520.2.d.b 2
1520.2.d.c 4
1520.2.d.d 4
1520.2.d.e 4
1520.2.d.f 4
1520.2.d.g 4
1520.2.d.h 6
1520.2.d.i 6
1520.2.d.j 6
1520.2.d.k 12
1520.2.e χ1520(151,)\chi_{1520}(151, \cdot) None 0 1
1520.2.f χ1520(761,)\chi_{1520}(761, \cdot) None 0 1
1520.2.g χ1520(1519,)\chi_{1520}(1519, \cdot) 1520.2.g.a 2 1
1520.2.g.b 2
1520.2.g.c 4
1520.2.g.d 4
1520.2.g.e 16
1520.2.g.f 16
1520.2.g.g 16
1520.2.j χ1520(911,)\chi_{1520}(911, \cdot) 1520.2.j.a 2 1
1520.2.j.b 2
1520.2.j.c 8
1520.2.j.d 8
1520.2.j.e 8
1520.2.j.f 12
1520.2.k χ1520(1369,)\chi_{1520}(1369, \cdot) None 0 1
1520.2.p χ1520(759,)\chi_{1520}(759, \cdot) None 0 1
1520.2.q χ1520(881,)\chi_{1520}(881, \cdot) 1520.2.q.a 2 2
1520.2.q.b 2
1520.2.q.c 2
1520.2.q.d 2
1520.2.q.e 2
1520.2.q.f 2
1520.2.q.g 2
1520.2.q.h 4
1520.2.q.i 6
1520.2.q.j 6
1520.2.q.k 8
1520.2.q.l 8
1520.2.q.m 8
1520.2.q.n 8
1520.2.q.o 8
1520.2.q.p 10
1520.2.r χ1520(797,)\chi_{1520}(797, \cdot) n/a 472 2
1520.2.t χ1520(1027,)\chi_{1520}(1027, \cdot) n/a 432 2
1520.2.w χ1520(379,)\chi_{1520}(379, \cdot) n/a 472 2
1520.2.y χ1520(381,)\chi_{1520}(381, \cdot) n/a 288 2
1520.2.bb χ1520(873,)\chi_{1520}(873, \cdot) None 0 2
1520.2.bc χ1520(1103,)\chi_{1520}(1103, \cdot) n/a 108 2
1520.2.bd χ1520(113,)\chi_{1520}(113, \cdot) n/a 116 2
1520.2.be χ1520(343,)\chi_{1520}(343, \cdot) None 0 2
1520.2.bi χ1520(229,)\chi_{1520}(229, \cdot) n/a 432 2
1520.2.bk χ1520(531,)\chi_{1520}(531, \cdot) n/a 320 2
1520.2.bl χ1520(267,)\chi_{1520}(267, \cdot) n/a 432 2
1520.2.bn χ1520(37,)\chi_{1520}(37, \cdot) n/a 472 2
1520.2.bp χ1520(729,)\chi_{1520}(729, \cdot) None 0 2
1520.2.bq χ1520(31,)\chi_{1520}(31, \cdot) 1520.2.bq.a 2 2
1520.2.bq.b 2
1520.2.bq.c 2
1520.2.bq.d 2
1520.2.bq.e 2
1520.2.bq.f 2
1520.2.bq.g 2
1520.2.bq.h 2
1520.2.bq.i 2
1520.2.bq.j 2
1520.2.bq.k 4
1520.2.bq.l 4
1520.2.bq.m 6
1520.2.bq.n 6
1520.2.bq.o 8
1520.2.bq.p 8
1520.2.bq.q 12
1520.2.bq.r 12
1520.2.bv χ1520(1319,)\chi_{1520}(1319, \cdot) None 0 2
1520.2.by χ1520(711,)\chi_{1520}(711, \cdot) None 0 2
1520.2.bz χ1520(49,)\chi_{1520}(49, \cdot) n/a 116 2
1520.2.ca χ1520(559,)\chi_{1520}(559, \cdot) n/a 120 2
1520.2.cb χ1520(121,)\chi_{1520}(121, \cdot) None 0 2
1520.2.ce χ1520(81,)\chi_{1520}(81, \cdot) n/a 240 6
1520.2.cf χ1520(597,)\chi_{1520}(597, \cdot) n/a 944 4
1520.2.ch χ1520(83,)\chi_{1520}(83, \cdot) n/a 944 4
1520.2.ck χ1520(501,)\chi_{1520}(501, \cdot) n/a 640 4
1520.2.cm χ1520(179,)\chi_{1520}(179, \cdot) n/a 944 4
1520.2.cn χ1520(217,)\chi_{1520}(217, \cdot) None 0 4
1520.2.co χ1520(463,)\chi_{1520}(463, \cdot) n/a 240 4
1520.2.ct χ1520(673,)\chi_{1520}(673, \cdot) n/a 232 4
1520.2.cu χ1520(7,)\chi_{1520}(7, \cdot) None 0 4
1520.2.cw χ1520(331,)\chi_{1520}(331, \cdot) n/a 640 4
1520.2.cy χ1520(349,)\chi_{1520}(349, \cdot) n/a 944 4
1520.2.cz χ1520(387,)\chi_{1520}(387, \cdot) n/a 944 4
1520.2.db χ1520(293,)\chi_{1520}(293, \cdot) n/a 944 4
1520.2.dd χ1520(279,)\chi_{1520}(279, \cdot) None 0 6
1520.2.di χ1520(441,)\chi_{1520}(441, \cdot) None 0 6
1520.2.dj χ1520(79,)\chi_{1520}(79, \cdot) n/a 360 6
1520.2.dm χ1520(289,)\chi_{1520}(289, \cdot) n/a 348 6
1520.2.dn χ1520(71,)\chi_{1520}(71, \cdot) None 0 6
1520.2.do χ1520(431,)\chi_{1520}(431, \cdot) n/a 240 6
1520.2.dp χ1520(9,)\chi_{1520}(9, \cdot) None 0 6
1520.2.ds χ1520(149,)\chi_{1520}(149, \cdot) n/a 2832 12
1520.2.dt χ1520(51,)\chi_{1520}(51, \cdot) n/a 1920 12
1520.2.dy χ1520(33,)\chi_{1520}(33, \cdot) n/a 696 12
1520.2.dz χ1520(23,)\chi_{1520}(23, \cdot) None 0 12
1520.2.ec χ1520(187,)\chi_{1520}(187, \cdot) n/a 2832 12
1520.2.ed χ1520(13,)\chi_{1520}(13, \cdot) n/a 2832 12
1520.2.eg χ1520(53,)\chi_{1520}(53, \cdot) n/a 2832 12
1520.2.eh χ1520(43,)\chi_{1520}(43, \cdot) n/a 2832 12
1520.2.ek χ1520(393,)\chi_{1520}(393, \cdot) None 0 12
1520.2.el χ1520(47,)\chi_{1520}(47, \cdot) n/a 720 12
1520.2.em χ1520(61,)\chi_{1520}(61, \cdot) n/a 1920 12
1520.2.en χ1520(59,)\chi_{1520}(59, \cdot) n/a 2832 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(1520))S_{2}^{\mathrm{old}}(\Gamma_1(1520)) into lower level spaces

S2old(Γ1(1520)) S_{2}^{\mathrm{old}}(\Gamma_1(1520)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))20^{\oplus 20}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))16^{\oplus 16}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))12^{\oplus 12}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))10^{\oplus 10}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))8^{\oplus 8}\oplusS2new(Γ1(10))S_{2}^{\mathrm{new}}(\Gamma_1(10))8^{\oplus 8}\oplusS2new(Γ1(16))S_{2}^{\mathrm{new}}(\Gamma_1(16))4^{\oplus 4}\oplusS2new(Γ1(19))S_{2}^{\mathrm{new}}(\Gamma_1(19))10^{\oplus 10}\oplusS2new(Γ1(20))S_{2}^{\mathrm{new}}(\Gamma_1(20))6^{\oplus 6}\oplusS2new(Γ1(38))S_{2}^{\mathrm{new}}(\Gamma_1(38))8^{\oplus 8}\oplusS2new(Γ1(40))S_{2}^{\mathrm{new}}(\Gamma_1(40))4^{\oplus 4}\oplusS2new(Γ1(76))S_{2}^{\mathrm{new}}(\Gamma_1(76))6^{\oplus 6}\oplusS2new(Γ1(80))S_{2}^{\mathrm{new}}(\Gamma_1(80))2^{\oplus 2}\oplusS2new(Γ1(95))S_{2}^{\mathrm{new}}(\Gamma_1(95))5^{\oplus 5}\oplusS2new(Γ1(152))S_{2}^{\mathrm{new}}(\Gamma_1(152))4^{\oplus 4}\oplusS2new(Γ1(190))S_{2}^{\mathrm{new}}(\Gamma_1(190))4^{\oplus 4}\oplusS2new(Γ1(304))S_{2}^{\mathrm{new}}(\Gamma_1(304))2^{\oplus 2}\oplusS2new(Γ1(380))S_{2}^{\mathrm{new}}(\Gamma_1(380))3^{\oplus 3}\oplusS2new(Γ1(760))S_{2}^{\mathrm{new}}(\Gamma_1(760))2^{\oplus 2}