Defining parameters
Level: | \( N \) | \(=\) | \( 1521 = 3^{2} \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1521.i (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 39 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(364\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1521, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 420 | 100 | 320 |
Cusp forms | 308 | 100 | 208 |
Eisenstein series | 112 | 0 | 112 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1521, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1521, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1521, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)