Properties

Label 1521.2.i
Level $1521$
Weight $2$
Character orbit 1521.i
Rep. character $\chi_{1521}(746,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $100$
Newform subspaces $8$
Sturm bound $364$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1521 = 3^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1521.i (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 8 \)
Sturm bound: \(364\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1521, [\chi])\).

Total New Old
Modular forms 420 100 320
Cusp forms 308 100 208
Eisenstein series 112 0 112

Trace form

\( 100 q + 8 q^{7} - 108 q^{16} + 8 q^{19} - 32 q^{22} + 12 q^{34} - 12 q^{37} - 112 q^{40} + 72 q^{46} + 96 q^{55} + 92 q^{58} - 8 q^{61} - 64 q^{67} - 88 q^{70} - 4 q^{73} - 48 q^{76} + 32 q^{79} - 24 q^{85}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1521, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1521.2.i.a 1521.i 39.f $4$ $12.145$ \(\Q(\zeta_{8})\) None 1521.2.i.a \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}-\zeta_{8}^{2}q^{4}+2\zeta_{8}q^{5}+(-3+\cdots)q^{7}+\cdots\)
1521.2.i.b 1521.i 39.f $4$ $12.145$ \(\Q(\zeta_{8})\) None 1521.2.i.a \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}-\zeta_{8}^{2}q^{4}+2\zeta_{8}q^{5}+(3+3\zeta_{8}^{2}+\cdots)q^{7}+\cdots\)
1521.2.i.c 1521.i 39.f $8$ $12.145$ \(\Q(\zeta_{24})\) None 117.2.ba.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_1 q^{2}-\beta_{3} q^{4}+(-\beta_{7}-\beta_{4}+2\beta_1)q^{5}+\cdots\)
1521.2.i.d 1521.i 39.f $8$ $12.145$ \(\Q(\zeta_{24})\) None 117.2.ba.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(\beta_{7}-\beta_{5})q^{2}+2\beta_{3} q^{4}+(-\beta_{7}+\beta_{5}+\beta_{2})q^{5}+\cdots\)
1521.2.i.e 1521.i 39.f $8$ $12.145$ \(\Q(\zeta_{24})\) None 117.2.ba.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(\beta_{7}-\beta_{5})q^{2}+2\beta_{3} q^{4}+(-\beta_{7}+\beta_{5}+\beta_{2})q^{5}+\cdots\)
1521.2.i.f 1521.i 39.f $8$ $12.145$ \(\Q(\zeta_{24})\) None 117.2.ba.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_1 q^{2}-\beta_{3} q^{4}+(-\beta_{7}-\beta_{4}+2\beta_1)q^{5}+\cdots\)
1521.2.i.g 1521.i 39.f $12$ $12.145$ 12.0.\(\cdots\).1 None 117.2.i.a \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{9}q^{2}+(\beta _{3}-2\beta _{4})q^{4}-\beta _{8}q^{5}+(1+\cdots)q^{7}+\cdots\)
1521.2.i.h 1521.i 39.f $48$ $12.145$ None 1521.2.i.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1521, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1521, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)