Defining parameters
Level: | \( N \) | \(=\) | \( 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1530.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(648\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1530, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 340 | 40 | 300 |
Cusp forms | 308 | 40 | 268 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1530, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1530, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1530, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(510, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(765, [\chi])\)\(^{\oplus 2}\)