Properties

Label 1530.2.d
Level 15301530
Weight 22
Character orbit 1530.d
Rep. character χ1530(919,)\chi_{1530}(919,\cdot)
Character field Q\Q
Dimension 4040
Newform subspaces 1010
Sturm bound 648648
Trace bound 1111

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1530=232517 1530 = 2 \cdot 3^{2} \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1530.d (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 5 5
Character field: Q\Q
Newform subspaces: 10 10
Sturm bound: 648648
Trace bound: 1111
Distinguishing TpT_p: 77, 1111, 2929

Dimensions

The following table gives the dimensions of various subspaces of M2(1530,[χ])M_{2}(1530, [\chi]).

Total New Old
Modular forms 340 40 300
Cusp forms 308 40 268
Eisenstein series 32 0 32

Trace form

40q40q44q5+4q108q11+8q14+40q164q19+4q2012q254q268q29+32q314q3420q354q40+8q41+8q448q46+16q95+O(q100) 40 q - 40 q^{4} - 4 q^{5} + 4 q^{10} - 8 q^{11} + 8 q^{14} + 40 q^{16} - 4 q^{19} + 4 q^{20} - 12 q^{25} - 4 q^{26} - 8 q^{29} + 32 q^{31} - 4 q^{34} - 20 q^{35} - 4 q^{40} + 8 q^{41} + 8 q^{44} - 8 q^{46}+ \cdots - 16 q^{95}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1530,[χ])S_{2}^{\mathrm{new}}(1530, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1530.2.d.a 1530.d 5.b 22 12.21712.217 Q(1)\Q(\sqrt{-1}) None 1530.2.d.a 00 00 4-4 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qiq2q4+(i2)q5+iq8+q-i q^{2}-q^{4}+(i-2)q^{5}+i q^{8}+\cdots
1530.2.d.b 1530.d 5.b 22 12.21712.217 Q(1)\Q(\sqrt{-1}) None 170.2.c.a 00 00 2-2 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qiq2q4+(2i1)q5+iq8+q-i q^{2}-q^{4}+(-2 i-1)q^{5}+i q^{8}+\cdots
1530.2.d.c 1530.d 5.b 22 12.21712.217 Q(1)\Q(\sqrt{-1}) None 510.2.d.a 00 00 44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+iq2q4+(i+2)q5+4iq7+q+i q^{2}-q^{4}+(i+2)q^{5}+4 i q^{7}+\cdots
1530.2.d.d 1530.d 5.b 22 12.21712.217 Q(1)\Q(\sqrt{-1}) None 1530.2.d.a 00 00 44 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qiq2q4+(i+2)q5+iq8+q-i q^{2}-q^{4}+(i+2)q^{5}+i q^{8}+\cdots
1530.2.d.e 1530.d 5.b 44 12.21712.217 Q(i,6)\Q(i, \sqrt{6}) None 510.2.d.c 00 00 4-4 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ2q2q4+(1+β1+β2)q5+q-\beta _{2}q^{2}-q^{4}+(-1+\beta _{1}+\beta _{2})q^{5}+\cdots
1530.2.d.f 1530.d 5.b 44 12.21712.217 Q(i,5)\Q(i, \sqrt{5}) None 510.2.d.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q2q4β2q5+(β1+β2+)q7+q+\beta _{1}q^{2}-q^{4}-\beta _{2}q^{5}+(-\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots
1530.2.d.g 1530.d 5.b 66 12.21712.217 6.0.5161984.1 None 170.2.c.b 00 00 2-2 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β4q2q4+(β1+β3)q5+(β1β2+)q7+q+\beta _{4}q^{2}-q^{4}+(\beta _{1}+\beta _{3})q^{5}+(\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots
1530.2.d.h 1530.d 5.b 66 12.21712.217 6.0.350464.1 None 1530.2.d.h 00 00 2-2 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q2q4β2q5+(β2β5)q7+q-\beta _{1}q^{2}-q^{4}-\beta _{2}q^{5}+(-\beta _{2}-\beta _{5})q^{7}+\cdots
1530.2.d.i 1530.d 5.b 66 12.21712.217 6.0.5161984.1 None 510.2.d.d 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ3q2q4β4q5+(β1+β2+2β3+)q7+q-\beta _{3}q^{2}-q^{4}-\beta _{4}q^{5}+(\beta _{1}+\beta _{2}+2\beta _{3}+\cdots)q^{7}+\cdots
1530.2.d.j 1530.d 5.b 66 12.21712.217 6.0.350464.1 None 1530.2.d.h 00 00 22 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q2q4+β2q5+(β2β5)q7+q+\beta _{1}q^{2}-q^{4}+\beta _{2}q^{5}+(-\beta _{2}-\beta _{5})q^{7}+\cdots

Decomposition of S2old(1530,[χ])S_{2}^{\mathrm{old}}(1530, [\chi]) into lower level spaces