Defining parameters
Level: | \( N \) | = | \( 1532 = 2^{2} \cdot 383 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 4 \) | ||
Sturm bound: | \(293376\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1532))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 74299 | 43166 | 31133 |
Cusp forms | 72390 | 42402 | 29988 |
Eisenstein series | 1909 | 764 | 1145 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1532))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
1532.2.a | \(\chi_{1532}(1, \cdot)\) | 1532.2.a.a | 4 | 1 |
1532.2.a.b | 12 | |||
1532.2.a.c | 16 | |||
1532.2.b | \(\chi_{1532}(1531, \cdot)\) | n/a | 190 | 1 |
1532.2.e | \(\chi_{1532}(9, \cdot)\) | n/a | 6080 | 190 |
1532.2.h | \(\chi_{1532}(11, \cdot)\) | n/a | 36100 | 190 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1532))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(1532)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(383))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(766))\)\(^{\oplus 2}\)