Properties

Label 1532.2
Level 1532
Weight 2
Dimension 42402
Nonzero newspaces 4
Sturm bound 293376
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1532 = 2^{2} \cdot 383 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 4 \)
Sturm bound: \(293376\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1532))\).

Total New Old
Modular forms 74299 43166 31133
Cusp forms 72390 42402 29988
Eisenstein series 1909 764 1145

Trace form

\( 42402 q - 191 q^{2} - 191 q^{4} - 382 q^{5} - 191 q^{6} - 191 q^{8} - 382 q^{9} - 191 q^{10} - 191 q^{12} - 382 q^{13} - 191 q^{14} - 191 q^{16} - 382 q^{17} - 191 q^{18} - 191 q^{20} - 382 q^{21} - 191 q^{22}+ \cdots - 191 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1532))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1532.2.a \(\chi_{1532}(1, \cdot)\) 1532.2.a.a 4 1
1532.2.a.b 12
1532.2.a.c 16
1532.2.b \(\chi_{1532}(1531, \cdot)\) n/a 190 1
1532.2.e \(\chi_{1532}(9, \cdot)\) n/a 6080 190
1532.2.h \(\chi_{1532}(11, \cdot)\) n/a 36100 190

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1532))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1532)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(383))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(766))\)\(^{\oplus 2}\)