Properties

Label 154.2.a
Level $154$
Weight $2$
Character orbit 154.a
Rep. character $\chi_{154}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $4$
Sturm bound $48$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 154 = 2 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 154.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(48\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(154))\).

Total New Old
Modular forms 28 5 23
Cusp forms 21 5 16
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(1\)
Minus space\(-\)\(4\)

Trace form

\( 5 q + q^{2} + 5 q^{4} + 2 q^{5} - 4 q^{6} - q^{7} + q^{8} + q^{9} + 6 q^{10} + q^{11} - 2 q^{13} + 3 q^{14} - 8 q^{15} + 5 q^{16} - 6 q^{17} + 5 q^{18} - 12 q^{19} + 2 q^{20} - 4 q^{21} + q^{22} + 8 q^{23}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(154))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 11
154.2.a.a 154.a 1.a $1$ $1.230$ \(\Q\) None 154.2.a.a \(-1\) \(0\) \(-4\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-4q^{5}-q^{7}-q^{8}-3q^{9}+\cdots\)
154.2.a.b 154.a 1.a $1$ $1.230$ \(\Q\) None 154.2.a.b \(-1\) \(2\) \(2\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+2q^{3}+q^{4}+2q^{5}-2q^{6}-q^{7}+\cdots\)
154.2.a.c 154.a 1.a $1$ $1.230$ \(\Q\) None 154.2.a.c \(1\) \(0\) \(2\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{5}-q^{7}+q^{8}-3q^{9}+\cdots\)
154.2.a.d 154.a 1.a $2$ $1.230$ \(\Q(\sqrt{5}) \) None 154.2.a.d \(2\) \(-2\) \(2\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1-\beta )q^{3}+q^{4}+(1+\beta )q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(154))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(154)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 2}\)