Properties

Label 156.2.b
Level $156$
Weight $2$
Character orbit 156.b
Rep. character $\chi_{156}(25,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $56$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 156.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(56\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(156, [\chi])\).

Total New Old
Modular forms 34 4 30
Cusp forms 22 4 18
Eisenstein series 12 0 12

Trace form

\( 4 q + 4 q^{9} + 4 q^{13} + 8 q^{17} - 16 q^{23} - 12 q^{25} - 8 q^{29} - 16 q^{35} + 8 q^{39} - 4 q^{49} - 16 q^{51} + 24 q^{53} + 24 q^{61} - 16 q^{65} - 16 q^{69} + 16 q^{75} + 48 q^{77} - 16 q^{79} + 4 q^{81}+ \cdots + 48 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(156, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
156.2.b.a 156.b 13.b $2$ $1.246$ \(\Q(\sqrt{-3}) \) None 156.2.b.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}-\beta q^{5}+q^{9}-\beta q^{11}+(-\beta-1)q^{13}+\cdots\)
156.2.b.b 156.b 13.b $2$ $1.246$ \(\Q(\sqrt{-1}) \) None 156.2.b.b \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}+\beta q^{5}+2\beta q^{7}+q^{9}-3\beta q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(156, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(156, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)