Defining parameters
Level: | \( N \) | \(=\) | \( 156 = 2^{2} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 156.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(156, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 34 | 4 | 30 |
Cusp forms | 22 | 4 | 18 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(156, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
156.2.b.a | $2$ | $1.246$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q-q^{3}-\beta q^{5}+q^{9}-\beta q^{11}+(-\beta-1)q^{13}+\cdots\) |
156.2.b.b | $2$ | $1.246$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(2\) | \(0\) | \(0\) | \(q+q^{3}+\beta q^{5}+2\beta q^{7}+q^{9}-3\beta q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(156, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(156, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)