Properties

Label 156.2.k
Level 156156
Weight 22
Character orbit 156.k
Rep. character χ156(31,)\chi_{156}(31,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 2828
Newform subspaces 66
Sturm bound 5656
Trace bound 66

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 156=22313 156 = 2^{2} \cdot 3 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 156.k (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 52 52
Character field: Q(i)\Q(i)
Newform subspaces: 6 6
Sturm bound: 5656
Trace bound: 66
Distinguishing TpT_p: 55, 77, 1111

Dimensions

The following table gives the dimensions of various subspaces of M2(156,[χ])M_{2}(156, [\chi]).

Total New Old
Modular forms 64 28 36
Cusp forms 48 28 20
Eisenstein series 16 0 16

Trace form

28q+4q528q9+32q14+8q16+4q208q2148q2212q2420q2632q28+20q3224q34+12q3732q404q41+24q42+4q444q45+40q98+O(q100) 28 q + 4 q^{5} - 28 q^{9} + 32 q^{14} + 8 q^{16} + 4 q^{20} - 8 q^{21} - 48 q^{22} - 12 q^{24} - 20 q^{26} - 32 q^{28} + 20 q^{32} - 24 q^{34} + 12 q^{37} - 32 q^{40} - 4 q^{41} + 24 q^{42} + 4 q^{44} - 4 q^{45}+ \cdots - 40 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(156,[χ])S_{2}^{\mathrm{new}}(156, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
156.2.k.a 156.k 52.f 22 1.2461.246 Q(1)\Q(\sqrt{-1}) None 156.2.k.a 2-2 00 2-2 4-4 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i1)q2iq3+2iq4+(i1)q5+q+(-i-1)q^{2}-i q^{3}+2 i q^{4}+(-i-1)q^{5}+\cdots
156.2.k.b 156.k 52.f 22 1.2461.246 Q(1)\Q(\sqrt{-1}) None 156.2.k.a 2-2 00 2-2 44 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i1)q2+iq3+2iq4+(i1)q5+q+(-i-1)q^{2}+i q^{3}+2 i q^{4}+(-i-1)q^{5}+\cdots
156.2.k.c 156.k 52.f 22 1.2461.246 Q(1)\Q(\sqrt{-1}) None 156.2.k.c 2-2 00 44 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i1)q2+iq32iq4+(2i+2)q5+q+(i-1)q^{2}+i q^{3}-2 i q^{4}+(2 i+2)q^{5}+\cdots
156.2.k.d 156.k 52.f 22 1.2461.246 Q(1)\Q(\sqrt{-1}) None 156.2.k.c 22 00 44 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(i+1)q2iq32iq4+(2i+2)q5+q+(-i+1)q^{2}-i q^{3}-2 i q^{4}+(2 i+2)q^{5}+\cdots
156.2.k.e 156.k 52.f 1010 1.2461.246 10.0.\cdots.1 None 156.2.k.e 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ1q2+β8q3+(β5+β7)q4+(β2+)q5+q-\beta _{1}q^{2}+\beta _{8}q^{3}+(\beta _{5}+\beta _{7})q^{4}+(\beta _{2}+\cdots)q^{5}+\cdots
156.2.k.f 156.k 52.f 1010 1.2461.246 10.0.\cdots.1 None 156.2.k.e 44 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β3q2+β6q3+(β7β8)q4+q+\beta _{3}q^{2}+\beta _{6}q^{3}+(-\beta _{7}-\beta _{8})q^{4}+\cdots

Decomposition of S2old(156,[χ])S_{2}^{\mathrm{old}}(156, [\chi]) into lower level spaces

S2old(156,[χ]) S_{2}^{\mathrm{old}}(156, [\chi]) \simeq S2new(52,[χ])S_{2}^{\mathrm{new}}(52, [\chi])2^{\oplus 2}