Defining parameters
Level: | \( N \) | \(=\) | \( 156 = 2^{2} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 156.k (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 52 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(156, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 28 | 36 |
Cusp forms | 48 | 28 | 20 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(156, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
156.2.k.a | $2$ | $1.246$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(-2\) | \(-4\) | \(q+(-i-1)q^{2}-i q^{3}+2 i q^{4}+(-i-1)q^{5}+\cdots\) |
156.2.k.b | $2$ | $1.246$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(-2\) | \(4\) | \(q+(-i-1)q^{2}+i q^{3}+2 i q^{4}+(-i-1)q^{5}+\cdots\) |
156.2.k.c | $2$ | $1.246$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(4\) | \(0\) | \(q+(i-1)q^{2}+i q^{3}-2 i q^{4}+(2 i+2)q^{5}+\cdots\) |
156.2.k.d | $2$ | $1.246$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(4\) | \(0\) | \(q+(-i+1)q^{2}-i q^{3}-2 i q^{4}+(2 i+2)q^{5}+\cdots\) |
156.2.k.e | $10$ | $1.246$ | 10.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{2}+\beta _{8}q^{3}+(\beta _{5}+\beta _{7})q^{4}+(\beta _{2}+\cdots)q^{5}+\cdots\) |
156.2.k.f | $10$ | $1.246$ | 10.0.\(\cdots\).1 | None | \(4\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{2}+\beta _{6}q^{3}+(-\beta _{7}-\beta _{8})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(156, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(156, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 2}\)