Properties

Label 156.2.k
Level $156$
Weight $2$
Character orbit 156.k
Rep. character $\chi_{156}(31,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $28$
Newform subspaces $6$
Sturm bound $56$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 156 = 2^{2} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 156.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(56\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(156, [\chi])\).

Total New Old
Modular forms 64 28 36
Cusp forms 48 28 20
Eisenstein series 16 0 16

Trace form

\( 28 q + 4 q^{5} - 28 q^{9} + 32 q^{14} + 8 q^{16} + 4 q^{20} - 8 q^{21} - 48 q^{22} - 12 q^{24} - 20 q^{26} - 32 q^{28} + 20 q^{32} - 24 q^{34} + 12 q^{37} - 32 q^{40} - 4 q^{41} + 24 q^{42} + 4 q^{44} - 4 q^{45}+ \cdots - 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(156, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
156.2.k.a 156.k 52.f $2$ $1.246$ \(\Q(\sqrt{-1}) \) None 156.2.k.a \(-2\) \(0\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i-1)q^{2}-i q^{3}+2 i q^{4}+(-i-1)q^{5}+\cdots\)
156.2.k.b 156.k 52.f $2$ $1.246$ \(\Q(\sqrt{-1}) \) None 156.2.k.a \(-2\) \(0\) \(-2\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i-1)q^{2}+i q^{3}+2 i q^{4}+(-i-1)q^{5}+\cdots\)
156.2.k.c 156.k 52.f $2$ $1.246$ \(\Q(\sqrt{-1}) \) None 156.2.k.c \(-2\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{2}+i q^{3}-2 i q^{4}+(2 i+2)q^{5}+\cdots\)
156.2.k.d 156.k 52.f $2$ $1.246$ \(\Q(\sqrt{-1}) \) None 156.2.k.c \(2\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i+1)q^{2}-i q^{3}-2 i q^{4}+(2 i+2)q^{5}+\cdots\)
156.2.k.e 156.k 52.f $10$ $1.246$ 10.0.\(\cdots\).1 None 156.2.k.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{1}q^{2}+\beta _{8}q^{3}+(\beta _{5}+\beta _{7})q^{4}+(\beta _{2}+\cdots)q^{5}+\cdots\)
156.2.k.f 156.k 52.f $10$ $1.246$ 10.0.\(\cdots\).1 None 156.2.k.e \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{3}q^{2}+\beta _{6}q^{3}+(-\beta _{7}-\beta _{8})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(156, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(156, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 2}\)