Defining parameters
Level: | \( N \) | \(=\) | \( 156 = 2^{2} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 156.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(156, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 90 | 6 | 84 |
Cusp forms | 78 | 6 | 72 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(156, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
156.4.b.a | $2$ | $9.204$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(6\) | \(0\) | \(0\) | \(q+3 q^{3}+2\beta q^{5}+3\beta q^{7}+9 q^{9}+\cdots\) |
156.4.b.b | $4$ | $9.204$ | 4.0.47664588.1 | None | \(0\) | \(-12\) | \(0\) | \(0\) | \(q-3q^{3}+\beta _{1}q^{5}-\beta _{2}q^{7}+9q^{9}+(-3\beta _{1}+\cdots)q^{11}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(156, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(156, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)