Properties

Label 1575.4.bx
Level 15751575
Weight 44
Character orbit 1575.bx
Rep. character χ1575(64,)\chi_{1575}(64,\cdot)
Character field Q(ζ10)\Q(\zeta_{10})
Dimension 904904
Sturm bound 960960

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1575=32527 1575 = 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1575.bx (of order 1010 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 25 25
Character field: Q(ζ10)\Q(\zeta_{10})
Sturm bound: 960960

Dimensions

The following table gives the dimensions of various subspaces of M4(1575,[χ])M_{4}(1575, [\chi]).

Total New Old
Modular forms 2912 904 2008
Cusp forms 2848 904 1944
Eisenstein series 64 0 64

Trace form

904q+912q4+18q5104q10+88q1156q143496q1672q19168q20+1010q22220q23298q25+348q26928q2972q31+168q34+28q35++2640q97+O(q100) 904 q + 912 q^{4} + 18 q^{5} - 104 q^{10} + 88 q^{11} - 56 q^{14} - 3496 q^{16} - 72 q^{19} - 168 q^{20} + 1010 q^{22} - 220 q^{23} - 298 q^{25} + 348 q^{26} - 928 q^{29} - 72 q^{31} + 168 q^{34} + 28 q^{35}+ \cdots + 2640 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(1575,[χ])S_{4}^{\mathrm{new}}(1575, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(1575,[χ])S_{4}^{\mathrm{old}}(1575, [\chi]) into lower level spaces

S4old(1575,[χ]) S_{4}^{\mathrm{old}}(1575, [\chi]) \simeq S4new(25,[χ])S_{4}^{\mathrm{new}}(25, [\chi])6^{\oplus 6}\oplusS4new(75,[χ])S_{4}^{\mathrm{new}}(75, [\chi])4^{\oplus 4}\oplusS4new(175,[χ])S_{4}^{\mathrm{new}}(175, [\chi])3^{\oplus 3}\oplusS4new(225,[χ])S_{4}^{\mathrm{new}}(225, [\chi])2^{\oplus 2}\oplusS4new(525,[χ])S_{4}^{\mathrm{new}}(525, [\chi])2^{\oplus 2}