Properties

Label 1575.4.d
Level $1575$
Weight $4$
Character orbit 1575.d
Rep. character $\chi_{1575}(1324,\cdot)$
Character field $\Q$
Dimension $134$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1575 = 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1575.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1575, [\chi])\).

Total New Old
Modular forms 744 134 610
Cusp forms 696 134 562
Eisenstein series 48 0 48

Trace form

\( 134 q - 504 q^{4} + 80 q^{11} - 56 q^{14} + 1976 q^{16} + 96 q^{19} - 636 q^{26} - 836 q^{29} + 24 q^{31} - 1088 q^{34} + 544 q^{41} - 1146 q^{44} + 202 q^{46} - 6566 q^{49} + 630 q^{56} - 20 q^{59} + 232 q^{61}+ \cdots - 10508 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1575, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1575, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1575, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 2}\)