Properties

Label 1575.4.p
Level 15751575
Weight 44
Character orbit 1575.p
Rep. character χ1575(118,)\chi_{1575}(118,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 356356
Sturm bound 960960

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1575=32527 1575 = 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1575.p (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 35 35
Character field: Q(i)\Q(i)
Sturm bound: 960960

Dimensions

The following table gives the dimensions of various subspaces of M4(1575,[χ])M_{4}(1575, [\chi]).

Total New Old
Modular forms 1488 364 1124
Cusp forms 1392 356 1036
Eisenstein series 96 8 88

Trace form

356q4q214q756q8+136q115288q16+228q22+92q2348q28912q32548q37+100q43+4020q46308q53+4444q563092q58+636q67++204q98+O(q100) 356 q - 4 q^{2} - 14 q^{7} - 56 q^{8} + 136 q^{11} - 5288 q^{16} + 228 q^{22} + 92 q^{23} - 48 q^{28} - 912 q^{32} - 548 q^{37} + 100 q^{43} + 4020 q^{46} - 308 q^{53} + 4444 q^{56} - 3092 q^{58} + 636 q^{67}+ \cdots + 204 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(1575,[χ])S_{4}^{\mathrm{new}}(1575, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S4old(1575,[χ])S_{4}^{\mathrm{old}}(1575, [\chi]) into lower level spaces

S4old(1575,[χ]) S_{4}^{\mathrm{old}}(1575, [\chi]) \simeq S4new(35,[χ])S_{4}^{\mathrm{new}}(35, [\chi])6^{\oplus 6}\oplusS4new(105,[χ])S_{4}^{\mathrm{new}}(105, [\chi])4^{\oplus 4}\oplusS4new(175,[χ])S_{4}^{\mathrm{new}}(175, [\chi])3^{\oplus 3}\oplusS4new(315,[χ])S_{4}^{\mathrm{new}}(315, [\chi])2^{\oplus 2}\oplusS4new(525,[χ])S_{4}^{\mathrm{new}}(525, [\chi])2^{\oplus 2}