Defining parameters
Level: | \( N \) | = | \( 1587 = 3 \cdot 23^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 8 \) | ||
Sturm bound: | \(744832\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1587))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 280808 | 209396 | 71412 |
Cusp forms | 277816 | 207988 | 69828 |
Eisenstein series | 2992 | 1408 | 1584 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1587))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
1587.4.a | \(\chi_{1587}(1, \cdot)\) | 1587.4.a.a | 2 | 1 |
1587.4.a.b | 2 | |||
1587.4.a.c | 2 | |||
1587.4.a.d | 2 | |||
1587.4.a.e | 4 | |||
1587.4.a.f | 4 | |||
1587.4.a.g | 4 | |||
1587.4.a.h | 5 | |||
1587.4.a.i | 5 | |||
1587.4.a.j | 6 | |||
1587.4.a.k | 6 | |||
1587.4.a.l | 6 | |||
1587.4.a.m | 6 | |||
1587.4.a.n | 7 | |||
1587.4.a.o | 7 | |||
1587.4.a.p | 10 | |||
1587.4.a.q | 14 | |||
1587.4.a.r | 16 | |||
1587.4.a.s | 24 | |||
1587.4.a.t | 30 | |||
1587.4.a.u | 30 | |||
1587.4.a.v | 30 | |||
1587.4.a.w | 30 | |||
1587.4.c | \(\chi_{1587}(1586, \cdot)\) | n/a | 484 | 1 |
1587.4.e | \(\chi_{1587}(118, \cdot)\) | n/a | 2520 | 10 |
1587.4.g | \(\chi_{1587}(263, \cdot)\) | n/a | 4840 | 10 |
1587.4.i | \(\chi_{1587}(70, \cdot)\) | n/a | 6072 | 22 |
1587.4.k | \(\chi_{1587}(68, \cdot)\) | n/a | 12100 | 22 |
1587.4.m | \(\chi_{1587}(4, \cdot)\) | n/a | 60720 | 220 |
1587.4.o | \(\chi_{1587}(5, \cdot)\) | n/a | 121000 | 220 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1587))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(1587)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(529))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(1587))\)\(^{\oplus 1}\)