Properties

Label 1587.4
Level 1587
Weight 4
Dimension 207988
Nonzero newspaces 8
Sturm bound 744832
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1587 = 3 \cdot 23^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(744832\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1587))\).

Total New Old
Modular forms 280808 209396 71412
Cusp forms 277816 207988 69828
Eisenstein series 2992 1408 1584

Trace form

\( 207988 q - 231 q^{3} - 462 q^{4} - 231 q^{6} - 462 q^{7} - 231 q^{9} - 462 q^{10} - 231 q^{12} - 462 q^{13} - 979 q^{15} - 2222 q^{16} - 352 q^{17} - 55 q^{18} - 22 q^{19} + 2816 q^{20} + 1089 q^{21} + 1430 q^{22}+ \cdots + 3465 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1587))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1587.4.a \(\chi_{1587}(1, \cdot)\) 1587.4.a.a 2 1
1587.4.a.b 2
1587.4.a.c 2
1587.4.a.d 2
1587.4.a.e 4
1587.4.a.f 4
1587.4.a.g 4
1587.4.a.h 5
1587.4.a.i 5
1587.4.a.j 6
1587.4.a.k 6
1587.4.a.l 6
1587.4.a.m 6
1587.4.a.n 7
1587.4.a.o 7
1587.4.a.p 10
1587.4.a.q 14
1587.4.a.r 16
1587.4.a.s 24
1587.4.a.t 30
1587.4.a.u 30
1587.4.a.v 30
1587.4.a.w 30
1587.4.c \(\chi_{1587}(1586, \cdot)\) n/a 484 1
1587.4.e \(\chi_{1587}(118, \cdot)\) n/a 2520 10
1587.4.g \(\chi_{1587}(263, \cdot)\) n/a 4840 10
1587.4.i \(\chi_{1587}(70, \cdot)\) n/a 6072 22
1587.4.k \(\chi_{1587}(68, \cdot)\) n/a 12100 22
1587.4.m \(\chi_{1587}(4, \cdot)\) n/a 60720 220
1587.4.o \(\chi_{1587}(5, \cdot)\) n/a 121000 220

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1587))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1587)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(529))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(1587))\)\(^{\oplus 1}\)