Properties

Label 1596.2.ba
Level $1596$
Weight $2$
Character orbit 1596.ba
Rep. character $\chi_{1596}(619,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $320$
Sturm bound $640$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1596 = 2^{2} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1596.ba (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 532 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(640\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1596, [\chi])\).

Total New Old
Modular forms 656 320 336
Cusp forms 624 320 304
Eisenstein series 32 0 32

Trace form

\( 320 q - 12 q^{8} - 160 q^{9} - 12 q^{13} + 6 q^{14} - 4 q^{21} - 320 q^{25} - 30 q^{26} - 32 q^{28} + 20 q^{32} + 4 q^{37} + 18 q^{38} - 24 q^{41} + 20 q^{46} - 4 q^{49} + 24 q^{50} + 16 q^{53} - 38 q^{56}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1596, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1596, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1596, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(532, [\chi])\)\(^{\oplus 2}\)