Properties

Label 1596.2.c
Level 15961596
Weight 22
Character orbit 1596.c
Rep. character χ1596(1483,)\chi_{1596}(1483,\cdot)
Character field Q\Q
Dimension 144144
Sturm bound 640640

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1596=223719 1596 = 2^{2} \cdot 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1596.c (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 28 28
Character field: Q\Q
Sturm bound: 640640

Dimensions

The following table gives the dimensions of various subspaces of M2(1596,[χ])M_{2}(1596, [\chi]).

Total New Old
Modular forms 328 144 184
Cusp forms 312 144 168
Eisenstein series 16 0 16

Trace form

144q+4q24q4+4q8+144q9+16q14+28q16+4q1824q22128q254q28+32q2932q30+4q324q36+32q37+32q4256q44+64q46+24q98+O(q100) 144 q + 4 q^{2} - 4 q^{4} + 4 q^{8} + 144 q^{9} + 16 q^{14} + 28 q^{16} + 4 q^{18} - 24 q^{22} - 128 q^{25} - 4 q^{28} + 32 q^{29} - 32 q^{30} + 4 q^{32} - 4 q^{36} + 32 q^{37} + 32 q^{42} - 56 q^{44} + 64 q^{46}+ \cdots - 24 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1596,[χ])S_{2}^{\mathrm{new}}(1596, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(1596,[χ])S_{2}^{\mathrm{old}}(1596, [\chi]) into lower level spaces

S2old(1596,[χ]) S_{2}^{\mathrm{old}}(1596, [\chi]) \simeq S2new(28,[χ])S_{2}^{\mathrm{new}}(28, [\chi])4^{\oplus 4}\oplusS2new(84,[χ])S_{2}^{\mathrm{new}}(84, [\chi])2^{\oplus 2}\oplusS2new(532,[χ])S_{2}^{\mathrm{new}}(532, [\chi])2^{\oplus 2}