Properties

Label 1596.2.s
Level 15961596
Weight 22
Character orbit 1596.s
Rep. character χ1596(505,)\chi_{1596}(505,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 4040
Newform subspaces 66
Sturm bound 640640
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1596=223719 1596 = 2^{2} \cdot 3 \cdot 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1596.s (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 19 19
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 6 6
Sturm bound: 640640
Trace bound: 55
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(1596,[χ])M_{2}(1596, [\chi]).

Total New Old
Modular forms 664 40 624
Cusp forms 616 40 576
Eisenstein series 48 0 48

Trace form

40q20q9+8q134q154q17+8q194q2124q2324q25+4q29+32q314q334q35+16q37+8q41+4q43+20q47+40q498q51+12q97+O(q100) 40 q - 20 q^{9} + 8 q^{13} - 4 q^{15} - 4 q^{17} + 8 q^{19} - 4 q^{21} - 24 q^{23} - 24 q^{25} + 4 q^{29} + 32 q^{31} - 4 q^{33} - 4 q^{35} + 16 q^{37} + 8 q^{41} + 4 q^{43} + 20 q^{47} + 40 q^{49} - 8 q^{51}+ \cdots - 12 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(1596,[χ])S_{2}^{\mathrm{new}}(1596, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
1596.2.s.a 1596.s 19.c 22 12.74412.744 Q(3)\Q(\sqrt{-3}) None 1596.2.s.a 00 1-1 1-1 22 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+ζ6)q3+(1+ζ6)q5+q7+q+(-1+\zeta_{6})q^{3}+(-1+\zeta_{6})q^{5}+q^{7}+\cdots
1596.2.s.b 1596.s 19.c 22 12.74412.744 Q(3)\Q(\sqrt{-3}) None 1596.2.s.b 00 1-1 33 22 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+ζ6)q3+(33ζ6)q5+q7+q+(-1+\zeta_{6})q^{3}+(3-3\zeta_{6})q^{5}+q^{7}+\cdots
1596.2.s.c 1596.s 19.c 88 12.74412.744 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 1596.2.s.c 00 4-4 6-6 88 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+β3)q3+(1β1+β3)q5+q+(-1+\beta _{3})q^{3}+(-1-\beta _{1}+\beta _{3})q^{5}+\cdots
1596.2.s.d 1596.s 19.c 88 12.74412.744 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 1596.2.s.d 00 4-4 22 8-8 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β3)q3+(1+β1+β3+β7)q5+q+(-1-\beta _{3})q^{3}+(1+\beta _{1}+\beta _{3}+\beta _{7})q^{5}+\cdots
1596.2.s.e 1596.s 19.c 88 12.74412.744 8.0.2127515625.3 None 1596.2.s.e 00 44 22 88 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ5q3+β1q5+q7+(1β5+)q9+q-\beta _{5}q^{3}+\beta _{1}q^{5}+q^{7}+(-1-\beta _{5}+\cdots)q^{9}+\cdots
1596.2.s.f 1596.s 19.c 1212 12.74412.744 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 1596.2.s.f 00 66 00 12-12 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β2)q3β3q5q7β2q9+q+(1-\beta _{2})q^{3}-\beta _{3}q^{5}-q^{7}-\beta _{2}q^{9}+\cdots

Decomposition of S2old(1596,[χ])S_{2}^{\mathrm{old}}(1596, [\chi]) into lower level spaces