Defining parameters
Level: | \( N \) | \(=\) | \( 1596 = 2^{2} \cdot 3 \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1596.u (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 133 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(640\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1596, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 664 | 52 | 612 |
Cusp forms | 616 | 52 | 564 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1596, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1596.2.u.a | $2$ | $12.744$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(0\) | \(-4\) | \(q-\zeta_{6}q^{3}+(-1+2\zeta_{6})q^{5}+(-1-2\zeta_{6})q^{7}+\cdots\) |
1596.2.u.b | $24$ | $12.744$ | None | \(0\) | \(-12\) | \(0\) | \(0\) | ||
1596.2.u.c | $26$ | $12.744$ | None | \(0\) | \(13\) | \(0\) | \(5\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1596, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1596, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(266, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(399, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(532, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(798, [\chi])\)\(^{\oplus 2}\)