Properties

Label 1596.2.u
Level $1596$
Weight $2$
Character orbit 1596.u
Rep. character $\chi_{1596}(145,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $52$
Newform subspaces $3$
Sturm bound $640$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1596 = 2^{2} \cdot 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1596.u (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 133 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(640\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1596, [\chi])\).

Total New Old
Modular forms 664 52 612
Cusp forms 616 52 564
Eisenstein series 48 0 48

Trace form

\( 52 q + q^{7} - 26 q^{9} - 6 q^{11} - 3 q^{13} - 12 q^{17} - 9 q^{19} + 3 q^{21} - 64 q^{25} + 3 q^{31} + 16 q^{35} - 3 q^{37} - 3 q^{39} - 12 q^{41} + 13 q^{43} - 6 q^{45} - 6 q^{47} - 25 q^{49} + 12 q^{55}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1596, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1596.2.u.a 1596.u 133.i $2$ $12.744$ \(\Q(\sqrt{-3}) \) None 1596.2.u.a \(0\) \(-1\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{6}]$ \(q-\zeta_{6}q^{3}+(-1+2\zeta_{6})q^{5}+(-1-2\zeta_{6})q^{7}+\cdots\)
1596.2.u.b 1596.u 133.i $24$ $12.744$ None 1596.2.u.b \(0\) \(-12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
1596.2.u.c 1596.u 133.i $26$ $12.744$ None 1596.2.u.c \(0\) \(13\) \(0\) \(5\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1596, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1596, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(266, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(399, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(532, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(798, [\chi])\)\(^{\oplus 2}\)