Properties

Label 16.18
Level 16
Weight 18
Dimension 74
Nonzero newspaces 2
Newform subspaces 6
Sturm bound 288
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 16 = 2^{4} \)
Weight: \( k \) = \( 18 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 6 \)
Sturm bound: \(288\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_1(16))\).

Total New Old
Modular forms 143 79 64
Cusp forms 129 74 55
Eisenstein series 14 5 9

Trace form

\( 74 q - 2 q^{2} - 6562 q^{3} - 54744 q^{4} - 12242 q^{5} - 9659408 q^{6} + 13155520 q^{7} - 101532236 q^{8} + 381202024 q^{9} + 284165324 q^{10} - 629746270 q^{11} + 647301316 q^{12} - 795138962 q^{13} + 6580735964 q^{14}+ \cdots + 16\!\cdots\!46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_1(16))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
16.18.a \(\chi_{16}(1, \cdot)\) 16.18.a.a 1 1
16.18.a.b 1
16.18.a.c 2
16.18.a.d 2
16.18.a.e 2
16.18.b \(\chi_{16}(9, \cdot)\) None 0 1
16.18.e \(\chi_{16}(5, \cdot)\) 16.18.e.a 66 2

Decomposition of \(S_{18}^{\mathrm{old}}(\Gamma_1(16))\) into lower level spaces

\( S_{18}^{\mathrm{old}}(\Gamma_1(16)) \cong \) \(S_{18}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{18}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 1}\)