Properties

Label 16.3.f
Level $16$
Weight $3$
Character orbit 16.f
Rep. character $\chi_{16}(3,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $6$
Newform subspaces $1$
Sturm bound $6$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 16.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(16, [\chi])\).

Total New Old
Modular forms 10 10 0
Cusp forms 6 6 0
Eisenstein series 4 4 0

Trace form

\( 6 q - 2 q^{2} - 2 q^{3} - 8 q^{4} - 2 q^{5} - 8 q^{6} - 4 q^{7} + 4 q^{8} + 36 q^{10} - 18 q^{11} + 52 q^{12} - 2 q^{13} + 12 q^{14} - 40 q^{16} - 4 q^{17} - 74 q^{18} + 30 q^{19} - 84 q^{20} - 20 q^{21}+ \cdots - 226 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(16, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
16.3.f.a 16.f 16.f $6$ $0.436$ 6.0.399424.1 None 16.3.f.a \(-2\) \(-2\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{2}q^{2}+(-1-\beta _{2}+\beta _{5})q^{3}+(-1+\cdots)q^{4}+\cdots\)