Defining parameters
Level: | \( N \) | \(=\) | \( 16 = 2^{4} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 16.f (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(10\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(16, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 18 | 18 | 0 |
Cusp forms | 14 | 14 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(16, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
16.5.f.a | $14$ | $1.654$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(-2\) | \(-2\) | \(-2\) | \(-4\) | \(q+\beta _{4}q^{2}-\beta _{6}q^{3}+(-1+2\beta _{3}-\beta _{11}+\cdots)q^{4}+\cdots\) |