Properties

Label 16.5.f
Level $16$
Weight $5$
Character orbit 16.f
Rep. character $\chi_{16}(3,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $14$
Newform subspaces $1$
Sturm bound $10$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 16.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(10\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(16, [\chi])\).

Total New Old
Modular forms 18 18 0
Cusp forms 14 14 0
Eisenstein series 4 4 0

Trace form

\( 14 q - 2 q^{2} - 2 q^{3} - 8 q^{4} - 2 q^{5} + 64 q^{6} - 4 q^{7} - 92 q^{8} - 100 q^{10} + 94 q^{11} - 332 q^{12} - 2 q^{13} + 44 q^{14} - 168 q^{16} - 4 q^{17} + 1390 q^{18} - 706 q^{19} + 1900 q^{20}+ \cdots + 49214 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(16, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
16.5.f.a 16.f 16.f $14$ $1.654$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 16.5.f.a \(-2\) \(-2\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{4}q^{2}-\beta _{6}q^{3}+(-1+2\beta _{3}-\beta _{11}+\cdots)q^{4}+\cdots\)