Defining parameters
Level: | \( N \) | \(=\) | \( 16 = 2^{4} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 16.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(16))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 17 | 4 | 13 |
Cusp forms | 11 | 3 | 8 |
Eisenstein series | 6 | 1 | 5 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | Dim |
---|---|
\(+\) | \(2\) |
\(-\) | \(1\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(16))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
16.8.a.a | $1$ | $4.998$ | \(\Q\) | None | \(0\) | \(-44\) | \(430\) | \(1224\) | $+$ | \(q-44q^{3}+430q^{5}+1224q^{7}-251q^{9}+\cdots\) | |
16.8.a.b | $1$ | $4.998$ | \(\Q\) | None | \(0\) | \(-12\) | \(-210\) | \(-1016\) | $-$ | \(q-12q^{3}-210q^{5}-1016q^{7}-2043q^{9}+\cdots\) | |
16.8.a.c | $1$ | $4.998$ | \(\Q\) | None | \(0\) | \(84\) | \(-82\) | \(456\) | $+$ | \(q+84q^{3}-82q^{5}+456q^{7}+4869q^{9}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(16))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(16)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)