Properties

Label 160.2.o
Level $160$
Weight $2$
Character orbit 160.o
Rep. character $\chi_{160}(47,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $8$
Newform subspaces $1$
Sturm bound $48$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 160.o (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(160, [\chi])\).

Total New Old
Modular forms 64 16 48
Cusp forms 32 8 24
Eisenstein series 32 8 24

Trace form

\( 8 q + 4 q^{3} + 8 q^{11} - 8 q^{17} - 8 q^{27} - 16 q^{33} - 20 q^{35} - 8 q^{41} - 28 q^{43} - 8 q^{51} + 8 q^{57} + 28 q^{67} + 16 q^{73} + 60 q^{75} + 32 q^{81} + 44 q^{83} + 40 q^{91} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(160, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
160.2.o.a 160.o 40.k $8$ $1.278$ \(\Q(\zeta_{20})\) None 40.2.k.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_{3} q^{3}+\beta_{5} q^{5}-\beta_{6} q^{7}+(-\beta_{3}+\beta_{2}+\beta_1-1)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(160, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(160, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 3}\)