Defining parameters
Level: | \( N \) | \(=\) | \( 160 = 2^{5} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 160.o (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 40 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(160, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 16 | 48 |
Cusp forms | 32 | 8 | 24 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(160, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
160.2.o.a | $8$ | $1.278$ | \(\Q(\zeta_{20})\) | None | \(0\) | \(4\) | \(0\) | \(0\) | \(q-\beta_{3} q^{3}+\beta_{5} q^{5}-\beta_{6} q^{7}+(-\beta_{3}+\beta_{2}+\beta_1-1)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(160, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(160, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 3}\)