Properties

Label 160.2.x
Level $160$
Weight $2$
Character orbit 160.x
Rep. character $\chi_{160}(21,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $64$
Newform subspaces $1$
Sturm bound $48$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 160.x (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 32 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(160, [\chi])\).

Total New Old
Modular forms 104 64 40
Cusp forms 88 64 24
Eisenstein series 16 0 16

Trace form

\( 64 q - 8 q^{10} - 16 q^{14} - 40 q^{16} - 40 q^{18} - 16 q^{20} + 8 q^{22} - 16 q^{23} + 32 q^{24} - 48 q^{27} + 40 q^{28} + 40 q^{32} + 40 q^{34} - 24 q^{36} + 40 q^{38} - 48 q^{39} - 40 q^{42} - 16 q^{43}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(160, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
160.2.x.a 160.x 32.g $64$ $1.278$ None 160.2.x.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$

Decomposition of \(S_{2}^{\mathrm{old}}(160, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(160, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 2}\)