Properties

Label 160.4.ba
Level $160$
Weight $4$
Character orbit 160.ba
Rep. character $\chi_{160}(3,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $280$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 160.ba (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 160 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(160, [\chi])\).

Total New Old
Modular forms 296 296 0
Cusp forms 280 280 0
Eisenstein series 16 16 0

Trace form

\( 280 q - 4 q^{2} - 4 q^{3} - 4 q^{5} - 8 q^{6} - 8 q^{7} - 88 q^{8} - 16 q^{10} - 8 q^{11} + 44 q^{12} - 4 q^{13} - 64 q^{14} - 8 q^{15} - 8 q^{16} - 36 q^{18} + 48 q^{19} + 304 q^{20} - 8 q^{21} - 436 q^{22}+ \cdots + 2760 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(160, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
160.4.ba.a 160.ba 160.aa $280$ $9.440$ None 160.4.u.a \(-4\) \(-4\) \(-4\) \(-8\) $\mathrm{SU}(2)[C_{8}]$