Properties

Label 160.5
Level 160
Weight 5
Dimension 1554
Nonzero newspaces 10
Newform subspaces 19
Sturm bound 7680
Trace bound 9

Downloads

Learn more

Defining parameters

Level: N N = 160=255 160 = 2^{5} \cdot 5
Weight: k k = 5 5
Nonzero newspaces: 10 10
Newform subspaces: 19 19
Sturm bound: 76807680
Trace bound: 99

Dimensions

The following table gives the dimensions of various subspaces of M5(Γ1(160))M_{5}(\Gamma_1(160)).

Total New Old
Modular forms 3200 1614 1586
Cusp forms 2944 1554 1390
Eisenstein series 256 60 196

Trace form

1554q8q28q38q4+12q524q64q78q874q9+188q10212q111448q12472q13872q144q15+1216q16+860q17+3232q18++140420q99+O(q100) 1554 q - 8 q^{2} - 8 q^{3} - 8 q^{4} + 12 q^{5} - 24 q^{6} - 4 q^{7} - 8 q^{8} - 74 q^{9} + 188 q^{10} - 212 q^{11} - 1448 q^{12} - 472 q^{13} - 872 q^{14} - 4 q^{15} + 1216 q^{16} + 860 q^{17} + 3232 q^{18}+ \cdots + 140420 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S5new(Γ1(160))S_{5}^{\mathrm{new}}(\Gamma_1(160))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
160.5.b χ160(31,)\chi_{160}(31, \cdot) 160.5.b.a 8 1
160.5.b.b 8
160.5.e χ160(79,)\chi_{160}(79, \cdot) 160.5.e.a 1 1
160.5.e.b 1
160.5.e.c 20
160.5.g χ160(111,)\chi_{160}(111, \cdot) 160.5.g.a 16 1
160.5.h χ160(159,)\chi_{160}(159, \cdot) 160.5.h.a 12 1
160.5.h.b 12
160.5.i χ160(57,)\chi_{160}(57, \cdot) None 0 2
160.5.k χ160(39,)\chi_{160}(39, \cdot) None 0 2
160.5.m χ160(17,)\chi_{160}(17, \cdot) 160.5.m.a 44 2
160.5.p χ160(33,)\chi_{160}(33, \cdot) 160.5.p.a 2 2
160.5.p.b 2
160.5.p.c 8
160.5.p.d 12
160.5.p.e 12
160.5.p.f 12
160.5.r χ160(71,)\chi_{160}(71, \cdot) None 0 2
160.5.t χ160(137,)\chi_{160}(137, \cdot) None 0 2
160.5.v χ160(13,)\chi_{160}(13, \cdot) 160.5.v.a 376 4
160.5.w χ160(11,)\chi_{160}(11, \cdot) 160.5.w.a 256 4
160.5.y χ160(19,)\chi_{160}(19, \cdot) 160.5.y.a 376 4
160.5.bb χ160(53,)\chi_{160}(53, \cdot) 160.5.bb.a 376 4

Decomposition of S5old(Γ1(160))S_{5}^{\mathrm{old}}(\Gamma_1(160)) into lower level spaces