Properties

Label 160.5
Level 160
Weight 5
Dimension 1554
Nonzero newspaces 10
Newform subspaces 19
Sturm bound 7680
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 160 = 2^{5} \cdot 5 \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 19 \)
Sturm bound: \(7680\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(160))\).

Total New Old
Modular forms 3200 1614 1586
Cusp forms 2944 1554 1390
Eisenstein series 256 60 196

Trace form

\( 1554 q - 8 q^{2} - 8 q^{3} - 8 q^{4} + 12 q^{5} - 24 q^{6} - 4 q^{7} - 8 q^{8} - 74 q^{9} + 188 q^{10} - 212 q^{11} - 1448 q^{12} - 472 q^{13} - 872 q^{14} - 4 q^{15} + 1216 q^{16} + 860 q^{17} + 3232 q^{18}+ \cdots + 140420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(160))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
160.5.b \(\chi_{160}(31, \cdot)\) 160.5.b.a 8 1
160.5.b.b 8
160.5.e \(\chi_{160}(79, \cdot)\) 160.5.e.a 1 1
160.5.e.b 1
160.5.e.c 20
160.5.g \(\chi_{160}(111, \cdot)\) 160.5.g.a 16 1
160.5.h \(\chi_{160}(159, \cdot)\) 160.5.h.a 12 1
160.5.h.b 12
160.5.i \(\chi_{160}(57, \cdot)\) None 0 2
160.5.k \(\chi_{160}(39, \cdot)\) None 0 2
160.5.m \(\chi_{160}(17, \cdot)\) 160.5.m.a 44 2
160.5.p \(\chi_{160}(33, \cdot)\) 160.5.p.a 2 2
160.5.p.b 2
160.5.p.c 8
160.5.p.d 12
160.5.p.e 12
160.5.p.f 12
160.5.r \(\chi_{160}(71, \cdot)\) None 0 2
160.5.t \(\chi_{160}(137, \cdot)\) None 0 2
160.5.v \(\chi_{160}(13, \cdot)\) 160.5.v.a 376 4
160.5.w \(\chi_{160}(11, \cdot)\) 160.5.w.a 256 4
160.5.y \(\chi_{160}(19, \cdot)\) 160.5.y.a 376 4
160.5.bb \(\chi_{160}(53, \cdot)\) 160.5.bb.a 376 4

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(160))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(160)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 5}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 1}\)