Properties

Label 1600.1.bw
Level $1600$
Weight $1$
Character orbit 1600.bw
Rep. character $\chi_{1600}(513,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $8$
Newform subspaces $1$
Sturm bound $240$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1600 = 2^{6} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1600.bw (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(240\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1600, [\chi])\).

Total New Old
Modular forms 120 24 96
Cusp forms 24 8 16
Eisenstein series 96 16 80

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + O(q^{10}) \) \( 8 q - 2 q^{13} + 2 q^{17} + 2 q^{25} + 2 q^{37} + 2 q^{45} + 2 q^{53} - 2 q^{65} - 2 q^{73} + 2 q^{81} + 8 q^{85} - 10 q^{89} - 2 q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(1600, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1600.1.bw.a 1600.bw 25.f $8$ $0.799$ \(\Q(\zeta_{20})\) $D_{20}$ \(\Q(\sqrt{-1}) \) None 800.1.bo.a \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{20}^{3}q^{5}-\zeta_{20}^{9}q^{9}+(\zeta_{20}-\zeta_{20}^{2}+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1600, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1600, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(800, [\chi])\)\(^{\oplus 2}\)