Defining parameters
Level: | \( N \) | \(=\) | \( 161 = 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 161.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(161))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 18 | 11 | 7 |
Cusp forms | 15 | 11 | 4 |
Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(7\) | \(23\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(6\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(9\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(161))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 7 | 23 | |||||||
161.2.a.a | $1$ | $1.286$ | \(\Q\) | None | \(-1\) | \(0\) | \(2\) | \(1\) | $-$ | $+$ | \(q-q^{2}-q^{4}+2q^{5}+q^{7}+3q^{8}-3q^{9}+\cdots\) | |
161.2.a.b | $2$ | $1.286$ | \(\Q(\sqrt{5}) \) | None | \(-1\) | \(-2\) | \(-2\) | \(-2\) | $+$ | $+$ | \(q-\beta q^{2}-q^{3}+(-1+\beta )q^{4}+(-2+2\beta )q^{5}+\cdots\) | |
161.2.a.c | $3$ | $1.286$ | 3.3.148.1 | None | \(-1\) | \(2\) | \(2\) | \(-3\) | $+$ | $-$ | \(q+(-\beta _{1}-\beta _{2})q^{2}+(1-\beta _{1})q^{3}+(1+2\beta _{1}+\cdots)q^{4}+\cdots\) | |
161.2.a.d | $5$ | $1.286$ | 5.5.2147108.1 | None | \(2\) | \(0\) | \(-4\) | \(5\) | $-$ | $+$ | \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(2+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(161))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(161)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 2}\)