Properties

Label 161.2.a
Level $161$
Weight $2$
Character orbit 161.a
Rep. character $\chi_{161}(1,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $4$
Sturm bound $32$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 161.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(32\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(161))\).

Total New Old
Modular forms 18 11 7
Cusp forms 15 11 4
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)\(23\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(6\)
Plus space\(+\)\(2\)
Minus space\(-\)\(9\)

Trace form

\( 11 q - q^{2} + 15 q^{4} - 2 q^{5} + 2 q^{6} + q^{7} - 3 q^{8} + 3 q^{9} - 10 q^{10} + 4 q^{11} - 6 q^{12} - 2 q^{13} + 3 q^{14} + 20 q^{15} + 19 q^{16} - 10 q^{17} - 15 q^{18} + 8 q^{19} - 6 q^{20} + 8 q^{22}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(161))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7 23
161.2.a.a 161.a 1.a $1$ $1.286$ \(\Q\) None 161.2.a.a \(-1\) \(0\) \(2\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}+2q^{5}+q^{7}+3q^{8}-3q^{9}+\cdots\)
161.2.a.b 161.a 1.a $2$ $1.286$ \(\Q(\sqrt{5}) \) None 161.2.a.b \(-1\) \(-2\) \(-2\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}-q^{3}+(-1+\beta )q^{4}+(-2+2\beta )q^{5}+\cdots\)
161.2.a.c 161.a 1.a $3$ $1.286$ 3.3.148.1 None 161.2.a.c \(-1\) \(2\) \(2\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}-\beta _{2})q^{2}+(1-\beta _{1})q^{3}+(1+2\beta _{1}+\cdots)q^{4}+\cdots\)
161.2.a.d 161.a 1.a $5$ $1.286$ 5.5.2147108.1 None 161.2.a.d \(2\) \(0\) \(-4\) \(5\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(2+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(161))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(161)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 2}\)