Properties

Label 161.2.o
Level $161$
Weight $2$
Character orbit 161.o
Rep. character $\chi_{161}(5,\cdot)$
Character field $\Q(\zeta_{66})$
Dimension $280$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 161 = 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 161.o (of order \(66\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 161 \)
Character field: \(\Q(\zeta_{66})\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(161, [\chi])\).

Total New Old
Modular forms 360 360 0
Cusp forms 280 280 0
Eisenstein series 80 80 0

Trace form

\( 280 q - 7 q^{2} - 27 q^{3} + q^{4} - 33 q^{5} - 22 q^{7} - 56 q^{8} - 15 q^{9} - 33 q^{10} - 11 q^{11} - 39 q^{12} - 22 q^{14} - 44 q^{15} + 11 q^{16} - 33 q^{17} - 77 q^{18} - 33 q^{19} + 44 q^{21} + 11 q^{23}+ \cdots - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(161, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
161.2.o.a 161.o 161.o $280$ $1.286$ None 161.2.o.a \(-7\) \(-27\) \(-33\) \(-22\) $\mathrm{SU}(2)[C_{66}]$