Defining parameters
Level: | \( N \) | \(=\) | \( 161 = 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 161.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 161 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(161, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 50 | 50 | 0 |
Cusp forms | 46 | 46 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(161, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
161.4.c.a | $2$ | $9.499$ | \(\Q(\sqrt{-7}) \) | \(\Q(\sqrt{-7}) \) | \(10\) | \(0\) | \(0\) | \(0\) | \(q+5q^{2}+17q^{4}+7\beta q^{7}+45q^{8}+3^{3}q^{9}+\cdots\) |
161.4.c.b | $8$ | $9.499$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-8\) | \(0\) | \(0\) | \(0\) | \(q-q^{2}-\beta _{2}q^{3}-7q^{4}+(-\beta _{1}-\beta _{3}+\cdots)q^{5}+\cdots\) |
161.4.c.c | $36$ | $9.499$ | None | \(-8\) | \(0\) | \(0\) | \(0\) |