Defining parameters
Level: | \( N \) | \(=\) | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 162.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(135\) | ||
Trace bound: | \(10\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(162, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 16 | 104 |
Cusp forms | 96 | 16 | 80 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(162, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
162.5.b.a | $4$ | $16.746$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | None | \(0\) | \(0\) | \(0\) | \(-52\) | \(q-2\beta _{1}q^{2}-8q^{4}+(-17\beta _{1}+5\beta _{2}+\cdots)q^{5}+\cdots\) |
162.5.b.b | $4$ | $16.746$ | \(\Q(\sqrt{-2}, \sqrt{3})\) | None | \(0\) | \(0\) | \(0\) | \(-52\) | \(q+2\beta _{1}q^{2}-8q^{4}+(-8\beta _{1}+\beta _{2})q^{5}+\cdots\) |
162.5.b.c | $8$ | $16.746$ | 8.0.\(\cdots\).4 | None | \(0\) | \(0\) | \(0\) | \(52\) | \(q+\beta _{2}q^{2}-8q^{4}-\beta _{4}q^{5}+(6+\beta _{1})q^{7}+\cdots\) |
Decomposition of \(S_{5}^{\mathrm{old}}(162, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(162, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)