Properties

Label 162.5.b
Level 162162
Weight 55
Character orbit 162.b
Rep. character χ162(161,)\chi_{162}(161,\cdot)
Character field Q\Q
Dimension 1616
Newform subspaces 33
Sturm bound 135135
Trace bound 1010

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 162=234 162 = 2 \cdot 3^{4}
Weight: k k == 5 5
Character orbit: [χ][\chi] == 162.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 3 3
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 135135
Trace bound: 1010
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M5(162,[χ])M_{5}(162, [\chi]).

Total New Old
Modular forms 120 16 104
Cusp forms 96 16 80
Eisenstein series 24 0 24

Trace form

16q128q452q7192q10+260q13+1024q16+716q19672q221916q25+416q28+1484q311728q345008q37+1536q40+3584q43+2112q46+20176q97+O(q100) 16 q - 128 q^{4} - 52 q^{7} - 192 q^{10} + 260 q^{13} + 1024 q^{16} + 716 q^{19} - 672 q^{22} - 1916 q^{25} + 416 q^{28} + 1484 q^{31} - 1728 q^{34} - 5008 q^{37} + 1536 q^{40} + 3584 q^{43} + 2112 q^{46}+ \cdots - 20176 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S5new(162,[χ])S_{5}^{\mathrm{new}}(162, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
162.5.b.a 162.b 3.b 44 16.74616.746 Q(2,3)\Q(\sqrt{-2}, \sqrt{3}) None 162.5.b.a 00 00 00 52-52 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q2β1q28q4+(17β1+5β2+)q5+q-2\beta _{1}q^{2}-8q^{4}+(-17\beta _{1}+5\beta _{2}+\cdots)q^{5}+\cdots
162.5.b.b 162.b 3.b 44 16.74616.746 Q(2,3)\Q(\sqrt{-2}, \sqrt{3}) None 162.5.b.b 00 00 00 52-52 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+2β1q28q4+(8β1+β2)q5+q+2\beta _{1}q^{2}-8q^{4}+(-8\beta _{1}+\beta _{2})q^{5}+\cdots
162.5.b.c 162.b 3.b 88 16.74616.746 8.0.\cdots.4 None 18.5.d.a 00 00 00 5252 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β2q28q4β4q5+(6+β1)q7+q+\beta _{2}q^{2}-8q^{4}-\beta _{4}q^{5}+(6+\beta _{1})q^{7}+\cdots

Decomposition of S5old(162,[χ])S_{5}^{\mathrm{old}}(162, [\chi]) into lower level spaces

S5old(162,[χ]) S_{5}^{\mathrm{old}}(162, [\chi]) \simeq S5new(6,[χ])S_{5}^{\mathrm{new}}(6, [\chi])4^{\oplus 4}\oplusS5new(9,[χ])S_{5}^{\mathrm{new}}(9, [\chi])6^{\oplus 6}\oplusS5new(27,[χ])S_{5}^{\mathrm{new}}(27, [\chi])4^{\oplus 4}\oplusS5new(54,[χ])S_{5}^{\mathrm{new}}(54, [\chi])2^{\oplus 2}\oplusS5new(81,[χ])S_{5}^{\mathrm{new}}(81, [\chi])2^{\oplus 2}