Properties

Label 162.5.b
Level $162$
Weight $5$
Character orbit 162.b
Rep. character $\chi_{162}(161,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $3$
Sturm bound $135$
Trace bound $10$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 162.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(135\)
Trace bound: \(10\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(162, [\chi])\).

Total New Old
Modular forms 120 16 104
Cusp forms 96 16 80
Eisenstein series 24 0 24

Trace form

\( 16 q - 128 q^{4} - 52 q^{7} - 192 q^{10} + 260 q^{13} + 1024 q^{16} + 716 q^{19} - 672 q^{22} - 1916 q^{25} + 416 q^{28} + 1484 q^{31} - 1728 q^{34} - 5008 q^{37} + 1536 q^{40} + 3584 q^{43} + 2112 q^{46}+ \cdots - 20176 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(162, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
162.5.b.a 162.b 3.b $4$ $16.746$ \(\Q(\sqrt{-2}, \sqrt{3})\) None 162.5.b.a \(0\) \(0\) \(0\) \(-52\) $\mathrm{SU}(2)[C_{2}]$ \(q-2\beta _{1}q^{2}-8q^{4}+(-17\beta _{1}+5\beta _{2}+\cdots)q^{5}+\cdots\)
162.5.b.b 162.b 3.b $4$ $16.746$ \(\Q(\sqrt{-2}, \sqrt{3})\) None 162.5.b.b \(0\) \(0\) \(0\) \(-52\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta _{1}q^{2}-8q^{4}+(-8\beta _{1}+\beta _{2})q^{5}+\cdots\)
162.5.b.c 162.b 3.b $8$ $16.746$ 8.0.\(\cdots\).4 None 18.5.d.a \(0\) \(0\) \(0\) \(52\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}-8q^{4}-\beta _{4}q^{5}+(6+\beta _{1})q^{7}+\cdots\)

Decomposition of \(S_{5}^{\mathrm{old}}(162, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(162, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)