Properties

Label 162.8.a
Level $162$
Weight $8$
Character orbit 162.a
Rep. character $\chi_{162}(1,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $10$
Sturm bound $216$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 162.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(216\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(162))\).

Total New Old
Modular forms 201 28 173
Cusp forms 177 28 149
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(+\)\(+\)\(+\)\(7\)
\(+\)\(-\)\(-\)\(7\)
\(-\)\(+\)\(-\)\(6\)
\(-\)\(-\)\(+\)\(8\)
Plus space\(+\)\(15\)
Minus space\(-\)\(13\)

Trace form

\( 28 q + 1792 q^{4} + 332 q^{7} + 3984 q^{10} + 16286 q^{13} + 114688 q^{16} + 42590 q^{19} - 70512 q^{22} + 428602 q^{25} + 21248 q^{28} - 504832 q^{31} - 96768 q^{34} - 452590 q^{37} + 254976 q^{40} - 974458 q^{43}+ \cdots - 15764302 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(162))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
162.8.a.a 162.a 1.a $1$ $50.606$ \(\Q\) None 162.8.a.a \(-8\) \(0\) \(165\) \(-508\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}+165q^{5}-508q^{7}+\cdots\)
162.8.a.b 162.a 1.a $1$ $50.606$ \(\Q\) None 162.8.a.a \(8\) \(0\) \(-165\) \(-508\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}-165q^{5}-508q^{7}+\cdots\)
162.8.a.c 162.a 1.a $2$ $50.606$ \(\Q(\sqrt{1929}) \) None 162.8.a.c \(-16\) \(0\) \(114\) \(280\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}+(57-\beta )q^{5}+(140+\cdots)q^{7}+\cdots\)
162.8.a.d 162.a 1.a $2$ $50.606$ \(\Q(\sqrt{1929}) \) None 162.8.a.c \(16\) \(0\) \(-114\) \(280\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}+(-57-\beta )q^{5}+(140+\cdots)q^{7}+\cdots\)
162.8.a.e 162.a 1.a $3$ $50.606$ 3.3.69765.1 None 18.8.c.a \(-24\) \(0\) \(54\) \(-210\) $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}+(18+2\beta _{1}-3\beta _{2})q^{5}+\cdots\)
162.8.a.f 162.a 1.a $3$ $50.606$ 3.3.69765.1 None 18.8.c.a \(24\) \(0\) \(-54\) \(-210\) $-$ $+$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}+(-18-2\beta _{1}+3\beta _{2})q^{5}+\cdots\)
162.8.a.g 162.a 1.a $4$ $50.606$ 4.4.43103376.1 None 162.8.a.g \(-32\) \(0\) \(-528\) \(560\) $+$ $-$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}+(-132+\beta _{1})q^{5}+\cdots\)
162.8.a.h 162.a 1.a $4$ $50.606$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 18.8.c.b \(-32\) \(0\) \(-54\) \(44\) $+$ $+$ $\mathrm{SU}(2)$ \(q-8q^{2}+2^{6}q^{4}+(-14-\beta _{1})q^{5}+(12+\cdots)q^{7}+\cdots\)
162.8.a.i 162.a 1.a $4$ $50.606$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 18.8.c.b \(32\) \(0\) \(54\) \(44\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}+(14+\beta _{1})q^{5}+(12+\cdots)q^{7}+\cdots\)
162.8.a.j 162.a 1.a $4$ $50.606$ 4.4.43103376.1 None 162.8.a.g \(32\) \(0\) \(528\) \(560\) $-$ $-$ $\mathrm{SU}(2)$ \(q+8q^{2}+2^{6}q^{4}+(132+\beta _{1})q^{5}+(140+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(162))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(162)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(81))\)\(^{\oplus 2}\)