Properties

Label 162.8.a
Level 162162
Weight 88
Character orbit 162.a
Rep. character χ162(1,)\chi_{162}(1,\cdot)
Character field Q\Q
Dimension 2828
Newform subspaces 1010
Sturm bound 216216
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 162=234 162 = 2 \cdot 3^{4}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 162.a (trivial)
Character field: Q\Q
Newform subspaces: 10 10
Sturm bound: 216216
Trace bound: 55
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M8(Γ0(162))M_{8}(\Gamma_0(162)).

Total New Old
Modular forms 201 28 173
Cusp forms 177 28 149
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

2233FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++52527745454646773939660066
++--49497742424343773636660066
-++-50506644444444663838660066
--++50508842424444883636660066
Plus space++102102151587879090151575751212001212
Minus space-9999131386868787131374741212001212

Trace form

28q+1792q4+332q7+3984q10+16286q13+114688q16+42590q1970512q22+428602q25+21248q28504832q3196768q34452590q37+254976q40974458q43+15764302q97+O(q100) 28 q + 1792 q^{4} + 332 q^{7} + 3984 q^{10} + 16286 q^{13} + 114688 q^{16} + 42590 q^{19} - 70512 q^{22} + 428602 q^{25} + 21248 q^{28} - 504832 q^{31} - 96768 q^{34} - 452590 q^{37} + 254976 q^{40} - 974458 q^{43}+ \cdots - 15764302 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S8new(Γ0(162))S_{8}^{\mathrm{new}}(\Gamma_0(162)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3
162.8.a.a 162.a 1.a 11 50.60650.606 Q\Q None 162.8.a.a 8-8 00 165165 508-508 ++ ++ SU(2)\mathrm{SU}(2) q8q2+26q4+165q5508q7+q-8q^{2}+2^{6}q^{4}+165q^{5}-508q^{7}+\cdots
162.8.a.b 162.a 1.a 11 50.60650.606 Q\Q None 162.8.a.a 88 00 165-165 508-508 - ++ SU(2)\mathrm{SU}(2) q+8q2+26q4165q5508q7+q+8q^{2}+2^{6}q^{4}-165q^{5}-508q^{7}+\cdots
162.8.a.c 162.a 1.a 22 50.60650.606 Q(1929)\Q(\sqrt{1929}) None 162.8.a.c 16-16 00 114114 280280 ++ ++ SU(2)\mathrm{SU}(2) q8q2+26q4+(57β)q5+(140+)q7+q-8q^{2}+2^{6}q^{4}+(57-\beta )q^{5}+(140+\cdots)q^{7}+\cdots
162.8.a.d 162.a 1.a 22 50.60650.606 Q(1929)\Q(\sqrt{1929}) None 162.8.a.c 1616 00 114-114 280280 - ++ SU(2)\mathrm{SU}(2) q+8q2+26q4+(57β)q5+(140+)q7+q+8q^{2}+2^{6}q^{4}+(-57-\beta )q^{5}+(140+\cdots)q^{7}+\cdots
162.8.a.e 162.a 1.a 33 50.60650.606 3.3.69765.1 None 18.8.c.a 24-24 00 5454 210-210 ++ - SU(2)\mathrm{SU}(2) q8q2+26q4+(18+2β13β2)q5+q-8q^{2}+2^{6}q^{4}+(18+2\beta _{1}-3\beta _{2})q^{5}+\cdots
162.8.a.f 162.a 1.a 33 50.60650.606 3.3.69765.1 None 18.8.c.a 2424 00 54-54 210-210 - ++ SU(2)\mathrm{SU}(2) q+8q2+26q4+(182β1+3β2)q5+q+8q^{2}+2^{6}q^{4}+(-18-2\beta _{1}+3\beta _{2})q^{5}+\cdots
162.8.a.g 162.a 1.a 44 50.60650.606 4.4.43103376.1 None 162.8.a.g 32-32 00 528-528 560560 ++ - SU(2)\mathrm{SU}(2) q8q2+26q4+(132+β1)q5+q-8q^{2}+2^{6}q^{4}+(-132+\beta _{1})q^{5}+\cdots
162.8.a.h 162.a 1.a 44 50.60650.606 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 18.8.c.b 32-32 00 54-54 4444 ++ ++ SU(2)\mathrm{SU}(2) q8q2+26q4+(14β1)q5+(12+)q7+q-8q^{2}+2^{6}q^{4}+(-14-\beta _{1})q^{5}+(12+\cdots)q^{7}+\cdots
162.8.a.i 162.a 1.a 44 50.60650.606 Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots) None 18.8.c.b 3232 00 5454 4444 - - SU(2)\mathrm{SU}(2) q+8q2+26q4+(14+β1)q5+(12+)q7+q+8q^{2}+2^{6}q^{4}+(14+\beta _{1})q^{5}+(12+\cdots)q^{7}+\cdots
162.8.a.j 162.a 1.a 44 50.60650.606 4.4.43103376.1 None 162.8.a.g 3232 00 528528 560560 - - SU(2)\mathrm{SU}(2) q+8q2+26q4+(132+β1)q5+(140+)q7+q+8q^{2}+2^{6}q^{4}+(132+\beta _{1})q^{5}+(140+\cdots)q^{7}+\cdots

Decomposition of S8old(Γ0(162))S_{8}^{\mathrm{old}}(\Gamma_0(162)) into lower level spaces