Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M8(Γ0(162)).
|
Total |
New |
Old |
Modular forms
| 201 |
28 |
173 |
Cusp forms
| 177 |
28 |
149 |
Eisenstein series
| 24 |
0 |
24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 3 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 52 | 7 | 45 | | 46 | 7 | 39 | | 6 | 0 | 6 |
+ | − | − | | 49 | 7 | 42 | | 43 | 7 | 36 | | 6 | 0 | 6 |
− | + | − | | 50 | 6 | 44 | | 44 | 6 | 38 | | 6 | 0 | 6 |
− | − | + | | 50 | 8 | 42 | | 44 | 8 | 36 | | 6 | 0 | 6 |
Plus space | + | | 102 | 15 | 87 | | 90 | 15 | 75 | | 12 | 0 | 12 |
Minus space | − | | 99 | 13 | 86 | | 87 | 13 | 74 | | 12 | 0 | 12 |
Decomposition of S8new(Γ0(162)) into newform subspaces
Decomposition of S8old(Γ0(162)) into lower level spaces