Defining parameters
Level: | \( N \) | = | \( 162 = 2 \cdot 3^{4} \) |
Weight: | \( k \) | = | \( 9 \) |
Nonzero newspaces: | \( 4 \) | ||
Sturm bound: | \(13122\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(162))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5940 | 1536 | 4404 |
Cusp forms | 5724 | 1536 | 4188 |
Eisenstein series | 216 | 0 | 216 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(162))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
162.9.b | \(\chi_{162}(161, \cdot)\) | 162.9.b.a | 8 | 1 |
162.9.b.b | 8 | |||
162.9.b.c | 16 | |||
162.9.d | \(\chi_{162}(53, \cdot)\) | 162.9.d.a | 4 | 2 |
162.9.d.b | 4 | |||
162.9.d.c | 4 | |||
162.9.d.d | 4 | |||
162.9.d.e | 8 | |||
162.9.d.f | 8 | |||
162.9.d.g | 16 | |||
162.9.d.h | 16 | |||
162.9.f | \(\chi_{162}(17, \cdot)\) | n/a | 144 | 6 |
162.9.h | \(\chi_{162}(5, \cdot)\) | n/a | 1296 | 18 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(162))\) into lower level spaces
\( S_{9}^{\mathrm{old}}(\Gamma_1(162)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(162))\)\(^{\oplus 1}\)