Properties

Label 162.9
Level 162
Weight 9
Dimension 1536
Nonzero newspaces 4
Sturm bound 13122
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 162 = 2 \cdot 3^{4} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 4 \)
Sturm bound: \(13122\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(162))\).

Total New Old
Modular forms 5940 1536 4404
Cusp forms 5724 1536 4188
Eisenstein series 216 0 216

Trace form

\( 1536 q - 882 q^{5} + 5538 q^{7} - 10752 q^{10} + 45756 q^{11} - 47010 q^{13} - 94464 q^{14} + 274176 q^{18} - 1287720 q^{19} + 564480 q^{20} + 2721870 q^{21} + 432768 q^{22} - 2417130 q^{23} - 3077046 q^{25}+ \cdots + 1648813176 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(162))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
162.9.b \(\chi_{162}(161, \cdot)\) 162.9.b.a 8 1
162.9.b.b 8
162.9.b.c 16
162.9.d \(\chi_{162}(53, \cdot)\) 162.9.d.a 4 2
162.9.d.b 4
162.9.d.c 4
162.9.d.d 4
162.9.d.e 8
162.9.d.f 8
162.9.d.g 16
162.9.d.h 16
162.9.f \(\chi_{162}(17, \cdot)\) n/a 144 6
162.9.h \(\chi_{162}(5, \cdot)\) n/a 1296 18

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(162))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(162)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 5}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(162))\)\(^{\oplus 1}\)