Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [16245,2,Mod(1,16245)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(16245, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("16245.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 16245 = 3^{2} \cdot 5 \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 16245.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(129.716978084\) |
Dimension: | \(6\) |
Coefficient field: | 6.6.79815328.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{6} - 3x^{5} - 4x^{4} + 11x^{3} + 5x^{2} - 6x - 2 \) |
Twist minimal: | not computed |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \( +1 \) |
\(5\) | \( +1 \) |
\(19\) | \( +1 \) |
Inner twists
Inner twists of this newform have not been computed.
Twists
Twists of this newform have not been computed.