Properties

Label 16245.2.a.co
Level 1624516245
Weight 22
Character orbit 16245.a
Self dual yes
Analytic conductor 129.717129.717
Dimension 99

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16245,2,Mod(1,16245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16245.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 16245=325192 16245 = 3^{2} \cdot 5 \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 16245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 129.716978084129.716978084
Dimension: 99
Coefficient field: Q[x]/(x9)\mathbb{Q}[x]/(x^{9} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x912x74x6+48x5+27x472x351x2+27x+19 x^{9} - 12x^{7} - 4x^{6} + 48x^{5} + 27x^{4} - 72x^{3} - 51x^{2} + 27x + 19 Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 9q+6q4+9q512q8+3q13+12q1412q16+9q17+6q2012q22+9q2521q2615q28+15q2930q319q3230q3712q40+18q41++33q98+O(q100) 9 q + 6 q^{4} + 9 q^{5} - 12 q^{8} + 3 q^{13} + 12 q^{14} - 12 q^{16} + 9 q^{17} + 6 q^{20} - 12 q^{22} + 9 q^{25} - 21 q^{26} - 15 q^{28} + 15 q^{29} - 30 q^{31} - 9 q^{32} - 30 q^{37} - 12 q^{40} + 18 q^{41}+ \cdots + 33 q^{98}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
1919 +1 +1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.