Properties

Label 16245.2.a.ct
Level 1624516245
Weight 22
Character orbit 16245.a
Self dual yes
Analytic conductor 129.717129.717
Dimension 1212

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16245,2,Mod(1,16245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16245.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 16245=325192 16245 = 3^{2} \cdot 5 \cdot 19^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 16245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 129.716978084129.716978084
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x1219x104x9+116x8+32x7293x692x5+309x4+100x3++1 x^{12} - 19 x^{10} - 4 x^{9} + 116 x^{8} + 32 x^{7} - 293 x^{6} - 92 x^{5} + 309 x^{4} + 100 x^{3} + \cdots + 1 Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 12q4q2+18q4+12q510q718q84q1022q11+16q134q14+18q168q17+18q20+14q2218q23+12q2510q2620q28+4q29+20q98+O(q100) 12 q - 4 q^{2} + 18 q^{4} + 12 q^{5} - 10 q^{7} - 18 q^{8} - 4 q^{10} - 22 q^{11} + 16 q^{13} - 4 q^{14} + 18 q^{16} - 8 q^{17} + 18 q^{20} + 14 q^{22} - 18 q^{23} + 12 q^{25} - 10 q^{26} - 20 q^{28} + 4 q^{29}+ \cdots - 20 q^{98}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
1919 +1 +1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.