Properties

Label 16245.2.a.o
Level $16245$
Weight $2$
Character orbit 16245.a
Self dual yes
Analytic conductor $129.717$
Dimension $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16245,2,Mod(1,16245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16245.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 16245 = 3^{2} \cdot 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 16245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(129.716978084\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 2 q - 3 q^{2} + 3 q^{4} + 2 q^{5} - 4 q^{7} - 6 q^{8} - 3 q^{10} + 7 q^{11} + 10 q^{13} + q^{14} + 13 q^{16} + 12 q^{17} + 3 q^{20} - 13 q^{22} + q^{23} + 2 q^{25} - 15 q^{26} + 9 q^{28} - 3 q^{29} + 15 q^{31}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(19\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.