Defining parameters
Level: | \( N \) | \(=\) | \( 1629 = 3^{2} \cdot 181 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1629.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 9 \) | ||
Sturm bound: | \(364\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1629))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 186 | 75 | 111 |
Cusp forms | 179 | 75 | 104 |
Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(181\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(10\) |
\(+\) | \(-\) | \(-\) | \(20\) |
\(-\) | \(+\) | \(-\) | \(25\) |
\(-\) | \(-\) | \(+\) | \(20\) |
Plus space | \(+\) | \(30\) | |
Minus space | \(-\) | \(45\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1629))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1629))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1629)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(181))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(543))\)\(^{\oplus 2}\)