Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M2(Γ0(1629)).
|
Total |
New |
Old |
Modular forms
| 186 |
75 |
111 |
Cusp forms
| 179 |
75 |
104 |
Eisenstein series
| 7 |
0 |
7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
3 | 181 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | | 41 | 10 | 31 | | 40 | 10 | 30 | | 1 | 0 | 1 |
+ | − | − | | 51 | 20 | 31 | | 49 | 20 | 29 | | 2 | 0 | 2 |
− | + | − | | 52 | 25 | 27 | | 50 | 25 | 25 | | 2 | 0 | 2 |
− | − | + | | 42 | 20 | 22 | | 40 | 20 | 20 | | 2 | 0 | 2 |
Plus space | + | | 83 | 30 | 53 | | 80 | 30 | 50 | | 3 | 0 | 3 |
Minus space | − | | 103 | 45 | 58 | | 99 | 45 | 54 | | 4 | 0 | 4 |
Decomposition of S2new(Γ0(1629)) into newform subspaces
Decomposition of S2old(Γ0(1629)) into lower level spaces