Properties

Label 1629.2.a
Level $1629$
Weight $2$
Character orbit 1629.a
Rep. character $\chi_{1629}(1,\cdot)$
Character field $\Q$
Dimension $75$
Newform subspaces $9$
Sturm bound $364$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1629 = 3^{2} \cdot 181 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1629.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(364\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1629))\).

Total New Old
Modular forms 186 75 111
Cusp forms 179 75 104
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(181\)FrickeDim
\(+\)\(+\)\(+\)\(10\)
\(+\)\(-\)\(-\)\(20\)
\(-\)\(+\)\(-\)\(25\)
\(-\)\(-\)\(+\)\(20\)
Plus space\(+\)\(30\)
Minus space\(-\)\(45\)

Trace form

\( 75 q + q^{2} + 77 q^{4} + 2 q^{5} + 3 q^{8} + 4 q^{10} + 4 q^{11} - 4 q^{13} + 2 q^{14} + 81 q^{16} - 8 q^{17} + 10 q^{19} + 8 q^{23} + 57 q^{25} - 18 q^{26} + 18 q^{28} + 6 q^{29} - 2 q^{31} + 17 q^{32}+ \cdots - 51 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1629))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 181
1629.2.a.a 1629.a 1.a $3$ $13.008$ \(\Q(\zeta_{14})^+\) None 543.2.a.a \(2\) \(0\) \(1\) \(-7\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1-2\beta _{1}+\beta _{2})q^{4}+\beta _{1}q^{5}+\cdots\)
1629.2.a.b 1629.a 1.a $5$ $13.008$ 5.5.170701.1 None 543.2.a.b \(1\) \(0\) \(-3\) \(9\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+(1+\beta _{1}+\beta _{2}-\beta _{4})q^{4}+(\beta _{2}+\cdots)q^{5}+\cdots\)
1629.2.a.c 1629.a 1.a $5$ $13.008$ 5.5.24217.1 None 181.2.a.a \(3\) \(0\) \(5\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{2}+(1-\beta _{2}+\beta _{4})q^{4}+(1+\cdots)q^{5}+\cdots\)
1629.2.a.d 1629.a 1.a $7$ $13.008$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 543.2.a.c \(4\) \(0\) \(3\) \(-1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(2-\beta _{1}+\beta _{2})q^{4}+\beta _{3}q^{5}+\cdots\)
1629.2.a.e 1629.a 1.a $8$ $13.008$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 543.2.a.d \(-3\) \(0\) \(-5\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(\beta _{1}+\beta _{2})q^{4}+(-1-\beta _{2}+\cdots)q^{5}+\cdots\)
1629.2.a.f 1629.a 1.a $8$ $13.008$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 543.2.a.e \(-3\) \(0\) \(2\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{6}q^{2}+(2+\beta _{1}+\beta _{5})q^{4}+(-\beta _{2}+\cdots)q^{5}+\cdots\)
1629.2.a.g 1629.a 1.a $9$ $13.008$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 181.2.a.b \(-3\) \(0\) \(-1\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}-\beta _{3}q^{5}+(-1+\cdots)q^{7}+\cdots\)
1629.2.a.h 1629.a 1.a $10$ $13.008$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 1629.2.a.h \(0\) \(0\) \(0\) \(-10\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{2}q^{4}-\beta _{5}q^{5}+(-1+\beta _{4}+\cdots)q^{7}+\cdots\)
1629.2.a.i 1629.a 1.a $20$ $13.008$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 1629.2.a.i \(0\) \(0\) \(0\) \(14\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(2+\beta _{2})q^{4}-\beta _{14}q^{5}+(1+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1629))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1629)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(181))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(543))\)\(^{\oplus 2}\)