Properties

Label 163.3
Level 163
Weight 3
Dimension 2133
Nonzero newspaces 5
Newform subspaces 6
Sturm bound 6642
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 163 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 6 \)
Sturm bound: \(6642\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(163))\).

Total New Old
Modular forms 2295 2295 0
Cusp forms 2133 2133 0
Eisenstein series 162 162 0

Trace form

\( 2133 q - 81 q^{2} - 81 q^{3} - 81 q^{4} - 81 q^{5} - 81 q^{6} - 81 q^{7} - 81 q^{8} - 81 q^{9} - 81 q^{10} - 81 q^{11} - 81 q^{12} - 81 q^{13} - 81 q^{14} - 81 q^{15} - 81 q^{16} - 81 q^{17} - 81 q^{18}+ \cdots - 81 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(163))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
163.3.b \(\chi_{163}(162, \cdot)\) 163.3.b.a 1 1
163.3.b.b 26
163.3.d \(\chi_{163}(59, \cdot)\) 163.3.d.a 54 2
163.3.f \(\chi_{163}(23, \cdot)\) 163.3.f.a 162 6
163.3.h \(\chi_{163}(5, \cdot)\) 163.3.h.a 486 18
163.3.j \(\chi_{163}(2, \cdot)\) 163.3.j.a 1404 54