Properties

Label 1632.2.a
Level $1632$
Weight $2$
Character orbit 1632.a
Rep. character $\chi_{1632}(1,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $20$
Sturm bound $576$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1632 = 2^{5} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1632.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(576\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1632))\).

Total New Old
Modular forms 304 32 272
Cusp forms 273 32 241
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(17\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(5\)
\(+\)\(+\)\(-\)\(-\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(5\)
\(+\)\(-\)\(-\)\(+\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(6\)
Plus space\(+\)\(14\)
Minus space\(-\)\(18\)

Trace form

\( 32 q + 32 q^{9} + 16 q^{13} + 16 q^{21} + 16 q^{25} - 16 q^{33} + 16 q^{37} - 32 q^{41} + 16 q^{57} + 16 q^{61} - 32 q^{65} + 32 q^{81} - 64 q^{89} + 16 q^{93} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1632))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 17
1632.2.a.a 1632.a 1.a $1$ $13.032$ \(\Q\) None 1632.2.a.a \(0\) \(-1\) \(-3\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{5}+2q^{7}+q^{9}-3q^{11}+\cdots\)
1632.2.a.b 1632.a 1.a $1$ $13.032$ \(\Q\) None 1632.2.a.b \(0\) \(-1\) \(-1\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-2q^{7}+q^{9}+5q^{11}-5q^{13}+\cdots\)
1632.2.a.c 1632.a 1.a $1$ $13.032$ \(\Q\) None 1632.2.a.c \(0\) \(-1\) \(-1\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}+2q^{7}+q^{9}+q^{11}-q^{13}+\cdots\)
1632.2.a.d 1632.a 1.a $1$ $13.032$ \(\Q\) None 1632.2.a.d \(0\) \(-1\) \(0\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{7}+q^{9}-6q^{13}-q^{17}+\cdots\)
1632.2.a.e 1632.a 1.a $1$ $13.032$ \(\Q\) None 1632.2.a.e \(0\) \(-1\) \(1\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{5}+2q^{7}+q^{9}+5q^{11}-q^{13}+\cdots\)
1632.2.a.f 1632.a 1.a $1$ $13.032$ \(\Q\) None 1632.2.a.f \(0\) \(-1\) \(2\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+2q^{5}+q^{9}-4q^{11}-2q^{13}+\cdots\)
1632.2.a.g 1632.a 1.a $1$ $13.032$ \(\Q\) None 1632.2.a.a \(0\) \(1\) \(-3\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{5}-2q^{7}+q^{9}+3q^{11}+\cdots\)
1632.2.a.h 1632.a 1.a $1$ $13.032$ \(\Q\) None 1632.2.a.c \(0\) \(1\) \(-1\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-2q^{7}+q^{9}-q^{11}-q^{13}+\cdots\)
1632.2.a.i 1632.a 1.a $1$ $13.032$ \(\Q\) None 1632.2.a.b \(0\) \(1\) \(-1\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}+2q^{7}+q^{9}-5q^{11}-5q^{13}+\cdots\)
1632.2.a.j 1632.a 1.a $1$ $13.032$ \(\Q\) None 1632.2.a.d \(0\) \(1\) \(0\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{7}+q^{9}-6q^{13}-q^{17}+\cdots\)
1632.2.a.k 1632.a 1.a $1$ $13.032$ \(\Q\) None 1632.2.a.e \(0\) \(1\) \(1\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{5}-2q^{7}+q^{9}-5q^{11}-q^{13}+\cdots\)
1632.2.a.l 1632.a 1.a $1$ $13.032$ \(\Q\) None 1632.2.a.f \(0\) \(1\) \(2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+2q^{5}+q^{9}+4q^{11}-2q^{13}+\cdots\)
1632.2.a.m 1632.a 1.a $2$ $13.032$ \(\Q(\sqrt{17}) \) None 1632.2.a.m \(0\) \(-2\) \(-3\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+(-1-\beta )q^{5}+(-2+2\beta )q^{7}+\cdots\)
1632.2.a.n 1632.a 1.a $2$ $13.032$ \(\Q(\sqrt{33}) \) None 1632.2.a.n \(0\) \(-2\) \(1\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+\beta q^{5}-2q^{7}+q^{9}+\beta q^{11}+\cdots\)
1632.2.a.o 1632.a 1.a $2$ $13.032$ \(\Q(\sqrt{17}) \) None 1632.2.a.m \(0\) \(2\) \(-3\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(-1-\beta )q^{5}+(2-2\beta )q^{7}+q^{9}+\cdots\)
1632.2.a.p 1632.a 1.a $2$ $13.032$ \(\Q(\sqrt{33}) \) None 1632.2.a.n \(0\) \(2\) \(1\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+\beta q^{5}+2q^{7}+q^{9}-\beta q^{11}+\cdots\)
1632.2.a.q 1632.a 1.a $3$ $13.032$ 3.3.229.1 None 1632.2.a.q \(0\) \(-3\) \(1\) \(-6\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-\beta _{1}q^{5}-2q^{7}+q^{9}+(1+\beta _{1}+\cdots)q^{11}+\cdots\)
1632.2.a.r 1632.a 1.a $3$ $13.032$ 3.3.316.1 None 1632.2.a.r \(0\) \(-3\) \(3\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+(1-\beta _{1})q^{5}+(-1-\beta _{1}-\beta _{2})q^{7}+\cdots\)
1632.2.a.s 1632.a 1.a $3$ $13.032$ 3.3.229.1 None 1632.2.a.q \(0\) \(3\) \(1\) \(6\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-\beta _{1}q^{5}+2q^{7}+q^{9}+(-1-\beta _{1}+\cdots)q^{11}+\cdots\)
1632.2.a.t 1632.a 1.a $3$ $13.032$ 3.3.316.1 None 1632.2.a.r \(0\) \(3\) \(3\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(1-\beta _{1})q^{5}+(1+\beta _{1}+\beta _{2})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1632))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1632)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(204))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(272))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(408))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(544))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(816))\)\(^{\oplus 2}\)