Properties

Label 1632.2.a
Level 16321632
Weight 22
Character orbit 1632.a
Rep. character χ1632(1,)\chi_{1632}(1,\cdot)
Character field Q\Q
Dimension 3232
Newform subspaces 2020
Sturm bound 576576
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 1632=25317 1632 = 2^{5} \cdot 3 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1632.a (trivial)
Character field: Q\Q
Newform subspaces: 20 20
Sturm bound: 576576
Trace bound: 77
Distinguishing TpT_p: 55, 77, 1111

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(1632))M_{2}(\Gamma_0(1632)).

Total New Old
Modular forms 304 32 272
Cusp forms 273 32 241
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

22331717FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++++36365531313333552828330033
++++--38384434343434443030440044
++-++-38385533333434552929440044
++--++36362234343232223030440044
-++++-40403337373636333333440044
-++-++38384434343434443030440044
--++++38383335353434333131440044
----40406634343636663030440044
Plus space++148148141413413413313314141191191515001515
Minus space-156156181813813814014018181221221616001616

Trace form

32q+32q9+16q13+16q21+16q2516q33+16q3732q41+16q57+16q6132q65+32q8164q89+16q93+32q97+O(q100) 32 q + 32 q^{9} + 16 q^{13} + 16 q^{21} + 16 q^{25} - 16 q^{33} + 16 q^{37} - 32 q^{41} + 16 q^{57} + 16 q^{61} - 32 q^{65} + 32 q^{81} - 64 q^{89} + 16 q^{93} + 32 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(1632))S_{2}^{\mathrm{new}}(\Gamma_0(1632)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 17
1632.2.a.a 1632.a 1.a 11 13.03213.032 Q\Q None 1632.2.a.a 00 1-1 3-3 22 ++ ++ ++ SU(2)\mathrm{SU}(2) qq33q5+2q7+q93q11+q-q^{3}-3q^{5}+2q^{7}+q^{9}-3q^{11}+\cdots
1632.2.a.b 1632.a 1.a 11 13.03213.032 Q\Q None 1632.2.a.b 00 1-1 1-1 2-2 - ++ - SU(2)\mathrm{SU}(2) qq3q52q7+q9+5q115q13+q-q^{3}-q^{5}-2q^{7}+q^{9}+5q^{11}-5q^{13}+\cdots
1632.2.a.c 1632.a 1.a 11 13.03213.032 Q\Q None 1632.2.a.c 00 1-1 1-1 22 ++ ++ - SU(2)\mathrm{SU}(2) qq3q5+2q7+q9+q11q13+q-q^{3}-q^{5}+2q^{7}+q^{9}+q^{11}-q^{13}+\cdots
1632.2.a.d 1632.a 1.a 11 13.03213.032 Q\Q None 1632.2.a.d 00 1-1 00 22 ++ ++ ++ SU(2)\mathrm{SU}(2) qq3+2q7+q96q13q17+q-q^{3}+2q^{7}+q^{9}-6q^{13}-q^{17}+\cdots
1632.2.a.e 1632.a 1.a 11 13.03213.032 Q\Q None 1632.2.a.e 00 1-1 11 22 - ++ ++ SU(2)\mathrm{SU}(2) qq3+q5+2q7+q9+5q11q13+q-q^{3}+q^{5}+2q^{7}+q^{9}+5q^{11}-q^{13}+\cdots
1632.2.a.f 1632.a 1.a 11 13.03213.032 Q\Q None 1632.2.a.f 00 1-1 22 00 - ++ - SU(2)\mathrm{SU}(2) qq3+2q5+q94q112q13+q-q^{3}+2q^{5}+q^{9}-4q^{11}-2q^{13}+\cdots
1632.2.a.g 1632.a 1.a 11 13.03213.032 Q\Q None 1632.2.a.a 00 11 3-3 2-2 - - ++ SU(2)\mathrm{SU}(2) q+q33q52q7+q9+3q11+q+q^{3}-3q^{5}-2q^{7}+q^{9}+3q^{11}+\cdots
1632.2.a.h 1632.a 1.a 11 13.03213.032 Q\Q None 1632.2.a.c 00 11 1-1 2-2 ++ - - SU(2)\mathrm{SU}(2) q+q3q52q7+q9q11q13+q+q^{3}-q^{5}-2q^{7}+q^{9}-q^{11}-q^{13}+\cdots
1632.2.a.i 1632.a 1.a 11 13.03213.032 Q\Q None 1632.2.a.b 00 11 1-1 22 ++ - - SU(2)\mathrm{SU}(2) q+q3q5+2q7+q95q115q13+q+q^{3}-q^{5}+2q^{7}+q^{9}-5q^{11}-5q^{13}+\cdots
1632.2.a.j 1632.a 1.a 11 13.03213.032 Q\Q None 1632.2.a.d 00 11 00 2-2 - - ++ SU(2)\mathrm{SU}(2) q+q32q7+q96q13q17+q+q^{3}-2q^{7}+q^{9}-6q^{13}-q^{17}+\cdots
1632.2.a.k 1632.a 1.a 11 13.03213.032 Q\Q None 1632.2.a.e 00 11 11 2-2 - - ++ SU(2)\mathrm{SU}(2) q+q3+q52q7+q95q11q13+q+q^{3}+q^{5}-2q^{7}+q^{9}-5q^{11}-q^{13}+\cdots
1632.2.a.l 1632.a 1.a 11 13.03213.032 Q\Q None 1632.2.a.f 00 11 22 00 - - - SU(2)\mathrm{SU}(2) q+q3+2q5+q9+4q112q13+q+q^{3}+2q^{5}+q^{9}+4q^{11}-2q^{13}+\cdots
1632.2.a.m 1632.a 1.a 22 13.03213.032 Q(17)\Q(\sqrt{17}) None 1632.2.a.m 00 2-2 3-3 2-2 - ++ - SU(2)\mathrm{SU}(2) qq3+(1β)q5+(2+2β)q7+q-q^{3}+(-1-\beta )q^{5}+(-2+2\beta )q^{7}+\cdots
1632.2.a.n 1632.a 1.a 22 13.03213.032 Q(33)\Q(\sqrt{33}) None 1632.2.a.n 00 2-2 11 4-4 - ++ ++ SU(2)\mathrm{SU}(2) qq3+βq52q7+q9+βq11+q-q^{3}+\beta q^{5}-2q^{7}+q^{9}+\beta q^{11}+\cdots
1632.2.a.o 1632.a 1.a 22 13.03213.032 Q(17)\Q(\sqrt{17}) None 1632.2.a.m 00 22 3-3 22 - - - SU(2)\mathrm{SU}(2) q+q3+(1β)q5+(22β)q7+q9+q+q^{3}+(-1-\beta )q^{5}+(2-2\beta )q^{7}+q^{9}+\cdots
1632.2.a.p 1632.a 1.a 22 13.03213.032 Q(33)\Q(\sqrt{33}) None 1632.2.a.n 00 22 11 44 ++ - ++ SU(2)\mathrm{SU}(2) q+q3+βq5+2q7+q9βq11+q+q^{3}+\beta q^{5}+2q^{7}+q^{9}-\beta q^{11}+\cdots
1632.2.a.q 1632.a 1.a 33 13.03213.032 3.3.229.1 None 1632.2.a.q 00 3-3 11 6-6 ++ ++ ++ SU(2)\mathrm{SU}(2) qq3β1q52q7+q9+(1+β1+)q11+q-q^{3}-\beta _{1}q^{5}-2q^{7}+q^{9}+(1+\beta _{1}+\cdots)q^{11}+\cdots
1632.2.a.r 1632.a 1.a 33 13.03213.032 3.3.316.1 None 1632.2.a.r 00 3-3 33 2-2 ++ ++ - SU(2)\mathrm{SU}(2) qq3+(1β1)q5+(1β1β2)q7+q-q^{3}+(1-\beta _{1})q^{5}+(-1-\beta _{1}-\beta _{2})q^{7}+\cdots
1632.2.a.s 1632.a 1.a 33 13.03213.032 3.3.229.1 None 1632.2.a.q 00 33 11 66 ++ - ++ SU(2)\mathrm{SU}(2) q+q3β1q5+2q7+q9+(1β1+)q11+q+q^{3}-\beta _{1}q^{5}+2q^{7}+q^{9}+(-1-\beta _{1}+\cdots)q^{11}+\cdots
1632.2.a.t 1632.a 1.a 33 13.03213.032 3.3.316.1 None 1632.2.a.r 00 33 33 22 - - - SU(2)\mathrm{SU}(2) q+q3+(1β1)q5+(1+β1+β2)q7+q+q^{3}+(1-\beta _{1})q^{5}+(1+\beta _{1}+\beta _{2})q^{7}+\cdots

Decomposition of S2old(Γ0(1632))S_{2}^{\mathrm{old}}(\Gamma_0(1632)) into lower level spaces

S2old(Γ0(1632)) S_{2}^{\mathrm{old}}(\Gamma_0(1632)) \simeq S2new(Γ0(17))S_{2}^{\mathrm{new}}(\Gamma_0(17))12^{\oplus 12}\oplusS2new(Γ0(24))S_{2}^{\mathrm{new}}(\Gamma_0(24))6^{\oplus 6}\oplusS2new(Γ0(32))S_{2}^{\mathrm{new}}(\Gamma_0(32))4^{\oplus 4}\oplusS2new(Γ0(34))S_{2}^{\mathrm{new}}(\Gamma_0(34))10^{\oplus 10}\oplusS2new(Γ0(48))S_{2}^{\mathrm{new}}(\Gamma_0(48))4^{\oplus 4}\oplusS2new(Γ0(51))S_{2}^{\mathrm{new}}(\Gamma_0(51))6^{\oplus 6}\oplusS2new(Γ0(68))S_{2}^{\mathrm{new}}(\Gamma_0(68))8^{\oplus 8}\oplusS2new(Γ0(96))S_{2}^{\mathrm{new}}(\Gamma_0(96))2^{\oplus 2}\oplusS2new(Γ0(102))S_{2}^{\mathrm{new}}(\Gamma_0(102))5^{\oplus 5}\oplusS2new(Γ0(136))S_{2}^{\mathrm{new}}(\Gamma_0(136))6^{\oplus 6}\oplusS2new(Γ0(204))S_{2}^{\mathrm{new}}(\Gamma_0(204))4^{\oplus 4}\oplusS2new(Γ0(272))S_{2}^{\mathrm{new}}(\Gamma_0(272))4^{\oplus 4}\oplusS2new(Γ0(408))S_{2}^{\mathrm{new}}(\Gamma_0(408))3^{\oplus 3}\oplusS2new(Γ0(544))S_{2}^{\mathrm{new}}(\Gamma_0(544))2^{\oplus 2}\oplusS2new(Γ0(816))S_{2}^{\mathrm{new}}(\Gamma_0(816))2^{\oplus 2}