Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of M2(Γ0(1632)).
|
Total |
New |
Old |
Modular forms
| 304 |
32 |
272 |
Cusp forms
| 273 |
32 |
241 |
Eisenstein series
| 31 |
0 |
31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
2 | 3 | 17 | Fricke | | Total | | Cusp | | Eisenstein |
---|
All | New | Old | All | New | Old | All | New | Old |
---|
+ | + | + | + | | 36 | 5 | 31 | | 33 | 5 | 28 | | 3 | 0 | 3 |
+ | + | − | − | | 38 | 4 | 34 | | 34 | 4 | 30 | | 4 | 0 | 4 |
+ | − | + | − | | 38 | 5 | 33 | | 34 | 5 | 29 | | 4 | 0 | 4 |
+ | − | − | + | | 36 | 2 | 34 | | 32 | 2 | 30 | | 4 | 0 | 4 |
− | + | + | − | | 40 | 3 | 37 | | 36 | 3 | 33 | | 4 | 0 | 4 |
− | + | − | + | | 38 | 4 | 34 | | 34 | 4 | 30 | | 4 | 0 | 4 |
− | − | + | + | | 38 | 3 | 35 | | 34 | 3 | 31 | | 4 | 0 | 4 |
− | − | − | − | | 40 | 6 | 34 | | 36 | 6 | 30 | | 4 | 0 | 4 |
Plus space | + | | 148 | 14 | 134 | | 133 | 14 | 119 | | 15 | 0 | 15 |
Minus space | − | | 156 | 18 | 138 | | 140 | 18 | 122 | | 16 | 0 | 16 |
Decomposition of S2new(Γ0(1632)) into newform subspaces
Decomposition of S2old(Γ0(1632)) into lower level spaces