Defining parameters
Level: | \( N \) | \(=\) | \( 165 = 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 165.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(165, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 28 | 48 |
Cusp forms | 68 | 28 | 40 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(165, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
165.4.c.a | $14$ | $9.735$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(0\) | \(0\) | \(-14\) | \(0\) | \(q+\beta _{1}q^{2}+\beta _{8}q^{3}+(-6+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\) |
165.4.c.b | $14$ | $9.735$ | \(\mathbb{Q}[x]/(x^{14} + \cdots)\) | None | \(0\) | \(0\) | \(-14\) | \(0\) | \(q+\beta _{6}q^{2}-\beta _{8}q^{3}+(-2-\beta _{3})q^{4}+(-1+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(165, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(165, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)