Properties

Label 165.4.c
Level $165$
Weight $4$
Character orbit 165.c
Rep. character $\chi_{165}(34,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $2$
Sturm bound $96$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 165 = 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 165.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(96\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(165, [\chi])\).

Total New Old
Modular forms 76 28 48
Cusp forms 68 28 40
Eisenstein series 8 0 8

Trace form

\( 28 q - 108 q^{4} - 28 q^{5} - 12 q^{6} - 252 q^{9} - 76 q^{10} - 368 q^{14} + 276 q^{16} - 168 q^{19} + 668 q^{20} + 96 q^{21} + 324 q^{24} - 204 q^{25} + 552 q^{26} - 1272 q^{29} - 336 q^{30} - 976 q^{31}+ \cdots + 6396 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(165, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
165.4.c.a 165.c 5.b $14$ $9.735$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 165.4.c.a \(0\) \(0\) \(-14\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{8}q^{3}+(-6+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
165.4.c.b 165.c 5.b $14$ $9.735$ \(\mathbb{Q}[x]/(x^{14} + \cdots)\) None 165.4.c.b \(0\) \(0\) \(-14\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{2}-\beta _{8}q^{3}+(-2-\beta _{3})q^{4}+(-1+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(165, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(165, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)